Public Works updated its Engineering Design and Development Standards (EDDS) in January 2016 to comply with new stormwater regulations issued by the Department of Ecology. Included was a new Chapter 11 for “Low Impact Development,” which is a stormwater and land use management strategy to mimic pre-disturbance hydrologic processes by emphasizing conservation, use of on-site natural features, site planning and distributed “best management practices” (BMPs) that are integrated into a project design. Common LID BMPs include filter strips alongside road pavement, bioretention systems, rain gardens and permeable pavement. Two recent Public Works’ road projects that have included LID BMPs are:

- **52nd Ave W (148th St SW to Lynnwood city limits):**
 This project, completed in 2014, incorporates porous concrete sidewalks and media filter drains for infiltration and treatment of stormwater runoff from sidewalks and road pavement. The porous concrete in the sidewalks contains air voids that allow runoff to pass through the pavement into a layer of crushed rock, before infiltrating into the ground. Approximately 9,500 linear feet of porous concrete sidewalk, 5 feet wide, was installed. Suspended solids, phosphorus and metals are collected and removed by compost-amended filter strips and infiltration through the media filter drain materials adjacent to the sidewalks. The media filter drains for this project treat the runoff from nearly 79,000 square feet of impervious surface, which amounts to approximately 300,000 gallons per year.

- **Seattle Hill Road (132nd St SE to 35th Ave SE):**
 This road corridor widening project, planned for 2017-2019 construction, will incorporate standard urban road features with porous concrete sidewalks to infiltrate runoff. Approximately 15,000 linear feet of porous concrete sidewalk, 5 feet wide, will be installed. In addition, bioretention cells and self-contained bioretention units will be installed to provide flow control and water quality treatment. These BMPs will capture, treat and infiltrate the runoff from approximately 54,000 square feet of impervious surface. Infiltrating the runoff reduces the need for additional drainage infrastructure and road right-of-way, thereby reducing future costs for maintenance and operation.

For more information and other initiative case studies, visit our web page: www.pugetsoundinitiative.com