MITIGATED DETERMINATION OF NONSIGNIFICANCE

Local File Number: 16-109244 LDA Project File Name: Paine Field Passenger Terminal

Applicant: Propeller Airports Paine Field

DESCRIPTION OF PROPOSAL:
The proposal would construct a new terminal between the existing terminal building and the control tower. The proposed terminal building would total approximately 29,300 square feet of interior space in compliance with FAA Advisory Circular 150/5360-13 Planning and Design Guidelines for Airport Terminal Facilities. The main components of the building would include the entrance and check-in, Transportation Security Administration (TSA) security screening, passenger waiting, and boarding area.

Existing parking areas described in the leasehold will be reconfigured into new parking facility areas to support the proposed new passenger terminal. This would include four surface lots totaling approximately 600 parking stalls of automobile parking for airline passengers, waiting, rental cars and terminal employees. One parking area would be configured northeast of the proposed terminal on land currently used by the Airport as an aircraft parking apron area and adjacent grass. The foregoing is cumulatively referred to as the “Proposal”.

Construction of a passenger terminal building will have the related effect of enabling passenger commercial air service by regional and narrow body aircraft at Paine Field subject to the independent authority of the Federal Aviation Administration (FAA). Accordingly, for purposes of evaluating the environmental impacts of the Proposal under SEPA, the lead agency anticipates the Proposal at an estimated terminal capacity which has the potential to serve between six to eight turns per gate/per day (generating an estimated 12 to 16 flight operations per gate/per day). This equates to a corresponding passenger activity of 2,700 to 3,600 per day (inclusive of arrivals and departures). At such time as the terminal reaches estimated capacity, the Proposal is anticipated to result in 433-510 directional vehicle trips per day (total traffic generation estimated at 866 to 1,020 daily vehicle trips), based on an estimated capacity of six to eight turns per gate/per day (generating an estimated 12 to 16 flight operations per gate/per day).

Location of Proposal: 3300 - 100th Street SW, Everett, Washington; located at the Paine Field Airport

Tax Account Number: 280415-004-001-00

Lead Agency: Snohomish County Department of Planning and Development Services

THRESHOLD DETERMINATION:
The lead agency for this proposal has determined that the proposal, as conditioned below, does not have a probable, significant adverse impact on the environment. An environmental impact statement (EIS) is NOT required under RCW 43.21C.030(2)(c). This decision is based in part upon adoption of that existing Final Environmental Assessment (EA) prepared under the National Environmental Policy Act (NEPA) by the
Federal Aviation Administration (FAA) relating to the FAA’s Environmental Assessment for Amendment to the Operations Specifications for Air Carrier Operations, Amendment to a FAR Part 139 Certificate, and Modification of the Terminal Building dated September 2012, as more fully set forth in that Adoption of Existing Environmental Document notice filed concurrently herewith. Impacts to elements of the environment which were deemed not adequately addressed in the existing Paine Field Final NEPA Environmental Assessment adopted herewith were further reviewed by Snohomish County based upon a completed environmental checklist and other information on file with this agency and such information is adopted herein by reference. This information is available for public review upon request.

This Mitigated Determination of Nonsignificance is issued under WAC 197-11-340 (2) and is subject to a 14 day comment period. Written comments may be submitted to the lead agency at the address below. Comments must be received by **March 13, 2017**.

Adoption of NEPA Environmental Assessment (WAC 197-11-610): In accordance with that adoption notice filed concurrently herewith, the lead agency hereby adopts, and otherwise incorporates by reference, that Final NEPA Environmental Assessment for the Amendment of Operations Specifications for Air Carrier Operations, Amendment of a FAR Part 139 Certificate, and potential Funding for Modification and Modular Expansion of the Terminal at the Snohomish County Airport/Paine Field dated September 2012, together with all referenced tables, illustrations and appendices (hereinafter “Paine Field Final NEPA Environmental Assessment”) in support of the foregoing SEPA mitigated determination of nonsignificance.

For purposes of the SEPA determination made hereunder, the lead agency has expanded the review of the Proposal’s impact upon traffic and noise beyond those flight operations and related enplanements evaluated under the Paine Field Final NEPA Environmental Assessment to consider the related effect upon noise and traffic based upon increased utilization of the terminal. For purposes of the above, the lead agency adopts as addendums to this MDNS the following supplemental studies and reports which add analysis and information about the Proposal’s impacts upon noise and traffic in the event of the terminal’s capacity:

1. Updated Noise Contour Study;
2. Updated Traffic Study

COMPLIANCE WITH DEVELOPMENT REGULATIONS (RCW 43.21C.240): In making the foregoing SEPA threshold determination the lead agency has determined in the course of review of the Proposal that the requirements for environmental analysis, protection and mitigation measures in Snohomish County’s development regulations and comprehensive plan adopted under Ch. 36.70A RCW, and in other local, state, or federal laws and rules provides adequate analysis and mitigation for the following specific environmental impacts as provided by RCW 43.21C.240 and WAC 197-11-158. Our agency will not require any additional mitigation measures under SEPA relating to said impacts. Approval of the proposal shall be subject to, and conditioned upon, compliance with the requirements or mitigation measures set forth in the following development regulations:

1. **Stormwater/Water Quality (SCC 30.61.122):** The Director of PDS hereby determines that compliance with the requirements of Ch. 30.43C, 30.43D, 30.44, 30.62A, 30.62B, 30.62C, 30.63A, 30.63B, 30.63C, 30.65 and 30.67 SCC is adequate analysis and mitigation of the specific probable adverse environmental impacts of the Proposal upon on-site and off-site changes to stormwater volume, release rate, erosion, sedimentation, stream channel stability and water quality where applicable.

2. **Critical Areas (SCC 30.62A.030):** The Director of PDS hereby determines that compliance with the requirements of Ch. 30.62A SCC is adequate analysis and mitigation of the specific probable adverse environmental impacts of the proposal on wetlands, fish and wildlife habitat conservation areas and their buffers where applicable.
3. Traffic/Road Impact Mitigation (SCC 30.66B.010(2)): The Director of PDS hereby determines that compliance with the requirements of Ch. 30.66B SCC, including payment of any road impact mitigation fee as determined thereunder, is adequate analysis and mitigation of the specific probable adverse environmental impacts of the proposal on impacts to the road system (including traffic).

4. Noise from Air Carrier Operations (Airport Noise and Capacity Act 1990, 49 USC ¶ 47521 et seq., and implementing regulations contained in the Code of Federal Regulations (CFR) Title 14 Part 36 – Noise Standards), requiring turbojet aircraft with a maximum weight of more than 75,000 pounds to comply with Stage 3 noise levels.

The FAA has established 65 DNL as the threshold above which aircraft noise is considered to be incompatible with residential areas. In addition, the FAA has determined that a significant impact occurs if a proposed action would result in an increase of 1.5 DNL or more on any noise sensitive area within the 65 DNL exposure level. (FAA Order 1050.1E; 14 CFR Part 150 Section 150.21(a)(2)(d); FICON 1992, Pp. 3-5.

MITIGATING CONDITIONS:

In addition to compliance with those applicable development regulations set forth above, this Mitigated Determination of Nonsignificance (MDNS) is issued subject to the following conditions:

1. Best Management Practices during construction to reduce or control erosion, sediment controls and spill prevention will include silt fences, storm drain inlet protection, straw wattles and high visibility plastic fencing as appropriate. Temporary erosion and sedimentation control plans as well as permanent measures such as storm water vaults consistent with the facility’s Storm Water Pollution Prevention Plan will be approved by Snohomish County Planning and Development Services. A certified Erosion and Sediment Control Lead (CESCL) will monitor the site for compliance with approved plans.

2. Construction equipment maintenance would be performed in a designated area, using best management practices, and will include spill control measures.

3. The redeveloped site will comply with Snohomish County’s 2016 drainage manual.

4. A water quality storm water detention vault will be installed to detain runoff from disturbed areas to discharge into Japanese Gulch in conjunction with the Snohomish County Drainage Manual. Shutoff valves will be installed to prevent accidental discharges in the event of a spill, and the Snohomish County Airport operates a spill response program.

5. The site will also include an oil/water separator with coalescing plates sized for fueling operations for the aircraft fueling outside the building. Impervious ground surfaces will drain through the proposed water quality facility and canisters with storm filters pre-approved by the Washington State Department of Ecology will be used to filter contaminants.

6. Aircraft deicing will occur on the existing aircraft deicing pad located at Alpha-1 or at any other approved airport area designated by the Airport.

7. Propeller Airports Paine Field will provide electrical power and heating, ventilating, and air conditioning (HVAC) for aircraft at the gates so the aircraft will not need to run the onboard auxiliary power unit (APU).

8. Roofing materials on the proposed terminal building will be non-pollution generating by excluding the use of materials such as zinc or copper.
9. The project shall comply with applicable laws for storm water control and management, including Snohomish County Code Chapter 30.63A.

10. Propeller Airports Paine Field shall require all air carriers that utilize the proposed terminal to operate aircraft that are, at a minimum, categorized by the Federal Aviation Administration (FAA) as “Stage 3” compliant or greater unless a waiver has been issued to the carrier by the FAA. The FAA regulates the maximum noise level that an individual civil aircraft can emit through requiring aircraft to meet certain noise certification standards. These standards designate changes in maximum noise level requirements by “stage” designation. The U.S. noise standards are defined in the Code of Federal Regulations (CFR) Title 14 Part 36 – Noise Standards: Aircraft Type and Airworthiness Certification (14 CFT Part 36). The FAA publishes certificated noise levels in the advisory circular Noise Levels for U.S. Certificated and Foreign Aircraft. This advisory circular provides noise level data for aircraft certificated under 14 CFR Part 36 and categorizes aircraft into their appropriate “stages”. Any aircraft that is certified for airworthiness in the U.S. needs to also comply with noise standard requirements to receive a noise certification.

11. Propeller Airports Paine Field will cooperate with Paine Field Operations and the air carriers in support of the Fly Friendly / Quiet Departure Program for Air Carrier operations with passengers to reduce departure noise. Air carriers and the aircraft crew when not a safety risk will adhere to the noise abatement procedures approved by their airplane manufacturer and the air carrier’s operating certificate.

12. Propeller Airports Paine Field will coordinate with Everett Transit, the public transit agency with direct access to the proposed terminal building, to assist the implementation and availability of public transportation.

13. Propeller Airports Paine Field will designate a minimum of 15% of the planned parking spaces as compact car parking, to reduce the total amount of impervious surfaces.

14. Propeller Airports Paine Field will support and encourage the use of electric powered aircraft support equipment on the aircraft ramp.

15. Propeller Airports Paine Field will provide a minimum of four electric vehicle charging stations within the project’s parking areas.

16. Propeller Airports Paine Field shall pay an impact fee to Snohomish County for traffic impacts to Transportation Service Area D in the amount of $206,161.40, in accordance with the provisions of SCC 30.66B.340.

17. Propeller Airports Paine Field shall make a payment to Snohomish County for the Washington State Department of Transportation (WSDOT) in the amount of $32,695.20 for mitigation of traffic impacts to State highways.

18. Propeller Airports Paine Field shall make a payment to the City of Mukilteo in the amount of $94,406.25 for mitigation of traffic impacts to city roads.

19. All air carriers utilizing the terminal shall comply with aircraft operational procedures as may be established by the Airport (subject to adoption by the FAA), such as preferential runway use, noise abatement approach and departure procedures and profiles, and flight tracks. Propeller Airports shall inform all carriers to comply with such other noise abatement as may be established by the Airport, from time to time, such as restrictions on taxiing and engine run-ups, which do not limit the total number of aircraft operations, or limit the hours of aircraft operations, at the airport.

20. Propeller Airports shall seek voluntary agreement with all air carriers utilizing the terminal to limit scheduled flights (inclusive of arrivals and departures), during nighttime hours (10:00 p.m. to 6:00
a.m. Pacific Standard Time), to no more than four (4) in any Twenty-Four-hour period. This limitation shall not apply to unscheduled flight operations which occur during nighttime hours due to weather delays, mechanical problems or re-routing of aircraft. In the event Propeller Airports is unable to secure such voluntary agreement with all air carriers, the County shall retain the right as proprietor of the Airport to submit such noise and access restrictions as the County deems appropriate to the United States secretary of transportation for approval as provided in 49 USC Sec. 47524

This Mitigated Determination of Nonsignificance is issued under WAC 197-11-340 (2) and is subject to a 14 day comment period. Written comments may be submitted to the lead agency at the address below. Comments must be received by March 13, 2017.

APPEALS:

This MDNS may be appealed pursuant to the requirements of Section 30.61.300 SCC and Chapter 2.02 SCC. The fourteen (14) day appeal period commences on the date of publication of notice. Any appeal must be addressed to the County Hearing Examiner, accompanied by a filing fee of $500.00, and be filed in writing at the Customer Support Center on the 2nd Floor, County Administration Building East, Everett, WA. The appeal must be received by March 13, 2017. The appeal must contain the items set forth in 30.71.050(5) SCC as follows:

(a) Facts demonstrating that the person is aggrieved by the decision;

(b) A concise statement identifying each alleged inadequacy in the threshold determination;

(c) The specific relief requested; and

(d) Any other information reasonably necessary to make a decision on appeal.

Please note that failure to file a timely and complete appeal including all the above items shall constitute waiver of all rights to an administrative appeal under county code. In addition to the above requirements, SCC 30.61.305(1) also requires that any person filing an appeal of a threshold determination made pursuant to this chapter shall file with the hearing examiner, within seven days of filing the appeal, a sworn affidavit or declaration demonstrating facts and evidence, that, if proven, would demonstrate that the issuance of the threshold determination was clearly erroneous.

Contact Person:
Tom Barnett, Project Manager

Responsible Official:
Barb Mock, Director
Planning and Development Services

Address:
County Administration Building East, 2nd Floor
3000 Rockefeller Avenue, M/S 604
Everett, Washington 98201

Signature: [Signature]
Date: 2/17/17

Date Issued: February 26, 2017 - SSullivan/ARC

VOLUNTARY OFFERS:
This threshold determination was reached on the basis of mitigation offered voluntarily by the developer. The voluntary offers submitted were evaluated as part of this threshold determination, and are considered necessary to reduce the overall level of impact below that which is probable, significant and adverse.

DISCLAIMER:

The determination that an environmental impact statement does not have to be filed does not mean there will be no adverse environmental impacts. Snohomish County codes governing noise control, land use performance standards, construction and improvement of county roads, off site road improvement obligations, drainage control, fire protection and building practices will provide substantial mitigation of the aforementioned impacts.

The issuance of this Mitigated Determination of Nonsignificance should not be interpreted as acceptance or approval of this proposal as presented. Snohomish County reserves the right to deny or approve said proposal subject to conditions if it is determined to be in the best interest of the county and/or necessary for the general health, safety and welfare of the public to do so.

DISTRIBUTION LIST:

| Snohomish County | Department of Public Works, Environmental Services
| Fire District 1
| Snohomish Health District
| Snohomish County Airport |
| Washington State | Department of Ecology
| Department of Transportation
| Department of Fish and Wildlife |
| Utilities | Public Utility District #1 of Snohomish County
| Mukilteo Water and Wastewater District |
| Other Agencies | Mukilteo School District No. 6
| Federal Aviation Administration |
| Adjacent Property Owners | Notice of the issuance of this Mitigated Determination of Nonsignificance has been mailed to property owners of record within 500 feet of the external boundaries of this project. |
| Parties-of-Record | Bill Dolan
| Snohomish County Airport
| 3220 – 100th Street SW, Suite A
| Everett, WA 98204 |
| William Lider
| Lider Engineering, PLLC
| 2526 – 205th Place SW
| Lynnwood, WA 98036 |
| Shelly Morgan
| Mukilteo School District
| 9401 Sharon Drive
| Mukilteo, WA 98204 |
Peter Eglick
Eglick & Whited PLLC
1000 Second Avenue, Suite 3130
Seattle, WA 98104

Chanda Emery
Community Development Department
Development & Business Services Center
4114 - 198th St. SW
Lynnwood, WA 98036

Ron Fronheiser
4615 Harbour Heights Drive
Mukilteo, WA 98275

Sabina Popa,
Everett Transit
3201 Smith Ave, Suite 215
Everett, WA 98201

Patricia Love
City of Mukilteo Community Development
11930 Cyrus Way
Mukilteo, WA 98275

Mike Moore
Save Our Communities
P.O. Box 482
Mukilteo, WA 98275

Joe A. Kunzler
AvgeekJoe Productions
901 Metcalf Street, PMB 21
Sedro-Woolley, WA 98284

Noah Haglund
Everett Herald
P.O. Box 930
Everett, WA 98206

ATTACHMENTS

1. Environmental Checklist
2. Vicinity Map
3. Ownership & Zoning Map
4. Site Plan
SEPA ENVIRONMENTAL CHECKLIST

Purpose of checklist:

Governmental agencies use this checklist to help determine whether the environmental impacts of your proposal are significant. This information is also helpful to determine if available avoidance, minimization or compensatory mitigation measures will address the probable significant impacts or if an environmental impact statement will be prepared to further analyze the proposal.

Instructions for applicants:

This environmental checklist asks you to describe some basic information about your proposal. Please answer each question accurately and carefully, to the best of your knowledge. You may need to consult with an agency specialist or private consultant for some questions. You may use "not applicable" or "does not apply" only when you can explain why it does not apply and not when the answer is unknown. You may also attach or incorporate by reference additional studies reports. Complete and accurate answers to these questions often avoid delays with the SEPA process as well as later in the decision-making process.

The checklist questions apply to all parts of your proposal, even if you plan to do them over a period of time or on different parcels of land. Attach any additional information that will help describe your proposal or its environmental effects. The agency to which you submit this checklist may ask you to explain your answers or provide additional information reasonably related to determining if there may be significant adverse impact.

Instructions for Lead Agencies:

Please adjust the format of this template as needed. Additional information may be necessary to evaluate the existing environment; all interrelated aspects of the proposal and an analysis of adverse impacts. The checklist is considered the first but not necessarily the only source of information needed to make an adequate threshold determination. Once a threshold determination is made, the lead agency is responsible for the completeness and accuracy of the checklist and other supporting documents.

The help links in this checklist are intended to assist users in accessing guidance on the checklist questions. Links are provided to the specific sections of the guidance applicable to the questions. However, the links may not work correctly on all devices. If the links do not work on your device, open the guidance at www.ecy.wa.gov/programs/sea/sepa/apguide/EnvChecklist/Guidance.html and navigate to the appropriate section.

Use of checklist for nonproject proposals: [help]

For nonproject proposals (such as ordinances, regulations, plans and programs), complete the applicable parts of sections A and B plus the SUPPLEMENTAL SHEET FOR NONPROJECT ACTIONS (part D). Please completely answer all questions that apply and note that the words "project," "applicant," and "property or site" should be read as "proposal," "proponent," and "affected geographic area," respectively. The lead agency may exclude (for non-projects) questions in Part B - Environmental Elements—that do not contribute meaningfully to the analysis of the proposal.

PFN: 16 109244 000 00 LDA
Paine Field Passenger Terminal

Received - 06/07/2016
A. Background

1. Name of proposed project, if applicable: Propeller Airports Paine Field Passenger Terminal

2. Name of applicant: Propeller Airports Paine Field, LLC

3. Address and phone number of applicant and contact person:

 Mark Reichin
 Propeller Airports Paine Field LLC
 9724 32nd Drive West
 Everett, WA 98204

 Tel: 425-216-3010

4. Date checklist prepared: May 26, 2016

5. Agency requesting checklist: Snohomish County Planning & Development Services

6. Proposed timing or schedule (including phasing, if applicable):

 Construction would commence upon issuance of necessary permits, scheduled for summer 2016. The terminal building will be shelled (enclosed) in approximately 5 months. The associated construction would involve the delivery of materials, minimal site grading and preparation, and connection to the existing utilities and infrastructure.

 Following the construction and enclosure of the terminal, interior fit-out and furnishings will occur. Automobile parking lot improvements will take place concurrently with terminal construction and subsequent interior fit-out.

7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.

 There are no plans for future additions or expansions related to this proposal at this time. Passenger ramps may be upgraded to enclosed passenger boarding bridges.

8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal:

 Previously prepared environmental information related to this proposal includes: Snohomish County Airport Environmental Assessment (September 2012)
Federal Aviation Administration (FAA) Finding of No Significant Impact and Record of Decision (FONSI/ROD) (December 2012)
Paine Field Airport Master Plan Update 2002-2021
Paine Field Passenger Terminal Traffic Impact Analysis (March 2016) – Gibson Traffic Engineers
Mukilteo Water and Wastewater District Certificate of Sewer and Water Availability (April 2016)
Stormwater Site Plan Paine Field Passenger Terminal – Snohomish County Airport (March 2016)

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain. [help]

There are no other applications pending. A previously prepared NEPA Environmental Assessment for the property was approved by FAA with a FONSI/ROD.

10. List any government approvals or permits that will be needed for your proposal, if known. [help]

Snohomish County Land Disturbing Activity and Building permits for passenger terminal and parking facilities
FAA 7460-1 Notice of Proposed Construction and Alteration
Stormwater site plan including Stormwater Pollution Prevention Plans for construction (by the contractor) and for facilities (by the owner)
Washington State Construction Stormwater Permit (NPDES)

11. Give brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page. (Lead agencies may modify this form to include additional specific information on project description.) [help]

Propeller Airports Paine Field, LLC proposes to construct new passenger facilities at Snohomish County Airport-Paine Field consisting of a terminal building and associated parking on a developed site currently occupied by existing aviation support functions. See Figure 1 for the site vicinity, Figures 2a and 2b for project site boundary, and Figures 3a, 3b and 4 for site plan and terminal floor plan. Snohomish County Airport-Paine Field currently has no scheduled commercial air service, and the existing terminal building cannot accommodate commercial airline service. The proposal would construct a new terminal between the existing terminal building and the control tower. The proposed terminal building would total approximately 29,300 square feet of interior space in compliance with FAA Advisory Circular 150/5360-13 Planning and Design Guidelines for Airport Terminal Facilities. The main components of the building would include the entrance and check-in, Transportation Security Administration (TSA) security screening, passenger waiting, boarding area, concessions, baggage handling and claim.
Existing parking areas described in the leasehold will be reconfigured into new parking facility areas to support the proposed new passenger terminal. This would include four surface lots totaling approximately 600 parking stalls of automobile parking for airline passengers, waiting, rental cars and terminal employees. One parking area would be configured northeast of the proposed terminal on land currently used by the airport as an aircraft parking apron area and adjacent grass.

12. **Location of the proposal.** Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist. [help]

The project site for the proposal is approximately 12 acres within the boundaries of Snohomish County Airport-Paine Field. Snohomish County Airport-Paine Field is located in unincorporated Snohomish County south of State Route 526 and east of State Route 525 at 3220 100th Street SW. See Figure 1 for the site vicinity and Figures 2a and 2b for project site boundary. The site is just north of 100th Street SW near the existing terminal building on tax parcel 28041500400100. The proposal is located in Township 28N Range 4E, Section 15.

B. ENVIRONMENTAL ELEMENTS [help]

1. **Earth** [help]
 a. General description of the site: [help]
 (circle one): **Flat**, rolling, hilly, steep slopes, mountainous, other _______________

 b. What is the steepest slope on the site (approximate percent slope)? [help]

 The site is generally flat with slopes less than 2 percent.

 c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils. [help]

 The site is classified by NRCS as Urban land. Currently, the majority of the site is paved with a combination of asphalt and concrete paving consistent with other sites at the airport.

 d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe. [help]

 The site is located in an area with low liquefaction susceptibility, and there is no known history of unstable soils in the immediate vicinity.
e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation, and grading proposed. Indicate source of fill. [help]

There would be earthwork for utilities and the building site preparation. Approximately 15,000 cubic yards of cut and 5,000 cubic yards of fill. Imported gravel/crushed aggregate from permitted sites would be used to backfill utility trenches and prepare approximately 31,000 square feet of grass/shrub area for landscaped asphalt pavement and limited areas of small concrete slabs.

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe. [help]

Temporary erosion would occur during clearing and construction that would be controlled by Best Management Practices.

g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)? [help]

The project would increase the net impervious coverage on the site by about ½ acre. This would increase impervious surfaces from approximately 91 to 96 percent.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any. [help]

Best Management Practices during construction to reduce or control erosion may include silt fences, storm drain inlet protection, straw wattles and high visibility plastic fencing. Temporary erosion sedimentation control plans as well as permanent measures such as stormwater vaults consistent with the facility’s Stormwater Pollution Prevention Plan would be approved by Snohomish County Planning and Development Services. A Certified Erosion and Sediment Control Lead (CESCL) will monitor the site for compliance with approved plans.

2. Air [help]

a. What types of emissions to the air would result from the proposal during construction, operation, and maintenance when the project is completed? If any, generally describe and give approximate quantities if known. [help]

Temporary emissions would generally be consistent with other types of typical construction projects, including those from construction equipment, vehicles and trucks. Emissions from construction would primarily occur during the approximately five month construction period, including vehicles in use at the airport for material delivery, site preparation, utilities connections and terminal construction. The interior fit-out and furnishing will result in minimal external equipment activity.

The proposal would enable commercial air service and increase ground support, but increases in emissions during operation would be a minimal indirect impact and therefore not addressed in this analysis. Changes in surface traffic patterns and vehicle miles traveled for air travelers are anticipated to result in a minor increase in emissions with the proposal.
A General Conformity Applicability Analysis was conducted in accordance with the requirements of the Clean Air Act Amendments, and project-related emissions would be below the defined de-Minimis threshold. A conformity determination would not be required for the proposal (Snohomish County Airport Environmental Assessment 2012).

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe. [help]

No.

c. Proposed measures to reduce or control emissions or other impacts to air, if any. [help]

Best Management Practices during construction would include muffler systems on vehicles, use of a water truck to control dust, compliance with Puget Sound Clean Air Agency industry standards, and minimizing idling of trucks and equipment. Use of some electric vehicles and equipment including tugs, carts and belt loaders would reduce the long-term emission potential of terminal and ramp operations. Conditioned air and ground power will be provided for aircraft to minimize auxiliary power unit use (APU).

3. Water [help]

a. Surface Water:

1) Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into. [help]

No. The proposal is located in the Japanese Gulch drainage, which drains north to the Japanese Gulch Creek and Puget Sound.

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans. [help]

No work would occur near creeks or wetlands.

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material. [help]

None.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known. [help]

No.

5) Does the proposal lie within a 100-year floodplain? If so, note location on the site plan. [help]
6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge. [help]

No.

b. Ground Water:

1) Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known. [help]

No.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: Domestic sewage; industrial, containing the following chemicals...; agricultural; etc.). Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve. [help]

None. The proposal would use the Mukilteo Water and Waste Water district’s municipal sanitary wastewater treatment system.

c. Water runoff (including stormwater):

1) Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe. [help]

Stormwater from the landside including parking areas, roadways and roofs will be collected in catch basins and conveyed to new detention and water quality facilities meeting the 2016 Snohomish County Stormwater Management Code. Stormwater from airside including ramps will be collected through trench drains and catch basins then conveyed to a new oil water separator. Downstream of the oil water separator, this water will be combined with landside runoff, then flow through the new detention and water quality facilities. There are no water disposal systems (such as infiltration or irrigation) planned as part of this proposal. The quantity of water leaving the site is approximately equal to the amount of rainfall less losses through evaporation or other natural means. The rate of flow leaving the site will comply with the 2016 Snohomish County Management Code considered as previously forested which is a significantly lower rate of flow than current conditions on the existing developed site. Stormwater having passed through the detention and water quality facilities will be conveyed in pipes into the existing Paine Field drainage system which flows north through the Boeing property, then west discharging into Paine Field Airport’s Alpha Pond. Alpha Pond drains north to the Japanese Creek drainage, ultimately flowing into the waters of Puget Sound.
See Figure 5 for the drainage site plan.

2) Could waste materials enter ground or surface waters? If so, generally describe. [help]

There is the potential for waste from the site to enter surface or groundwater. However, the site is being designed with a Stormwater Site Plan to comply with the county's stormwater regulations. Potential contamination (or spills) from the paved areas must all flow across the surface of the pavements (non-permeable), into trench drains or catch basins, through both an oil/water separator and a water quality vault prior to entering the airport's water quality system that discharges into the Japanese Gulch.

3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe. [help]

No. Stormwater from the proposal would be treated and detained in Alpha Pond before being released into Japanese Gulch Creek at predevelopment flow rates.

d. Proposed measures to reduce or control surface, ground, and runoff water, and drainage pattern impacts, if any: [help]

All construction activities would occur under the Stormwater Construction General Permit. A Notice of Intent would be sent to the Washington State Department of Ecology and advertised in a local business journal or newspaper prior to construction. Best Management Practices including erosion and sediment controls and spill prevention would occur during construction to prevent water pollution. Construction equipment maintenance would be performed in a designated area and include spill control measures. Guidance in the county's Capital Facilities Plan (Snohomish County 2015) would be followed for the proposal.

The proposal would be consistent with the Stormwater Industrial Permit. As explained below, the redeveloped site would include numerous provisions to protect water quality compliant with Snohomish County's 2016 Drainage Manual (See: http://snohomishcountywa.gov/1130/Drainage-Manual). A water quality vault will be installed to detain runoff from disturbed areas to discharge into Japanese Gulch in conjunction with the Snohomish County Drainage Manual. Shutoff valves would be installed to prevent accidental discharges in the event of a spill, and Snohomish County Airport-Paine Field operates a spill response program. The site would also include an oil/water separator with coalescing plates sized for fueling operations for the aircraft fueling outside the building. Impervious ground surfaces would drain through the proposed water quality facility and canisters with storm filters pre-approved by Ecology would be used to filter contaminants. De-icing will occur on the existing de-icing pad. New roofs will be non-pollution generating by excluding the use of materials such as zinc or copper that could pollute water.

The proposal would comply with all applicable laws for stormwater control and management, including Snohomish County Code, Chapter 30.63A.

4. Plants [help]
a. Check the types of vegetation found on the site:

___ deciduous tree: alder, maple, aspen, other
___ evergreen tree: fir, cedar, pine, other
x ___ shrubs
x ___ grass
___ pasture
___ crop or grain
___ Orchards, vineyards or other permanent crops.
___ wet soil plants: cattail, buttercup, bulrush, skunk cabbage, other
___ water plants: water lily, eelgrass, milfoil, other
___ other types of vegetation

b. What kind and amount of vegetation will be removed or altered? [help]

The new terminal building would be located on an existing paved apron area. Approximately 31,000 square feet of grass-covered infield would be removed and replaced with a landscaped parking area.

c. List threatened and endangered species known to be on or near the site. [help]

There are no known threatened or endangered species known to occur near the site.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any. [help]

Since the site is within the perimeter of an operating airport, the FAA Circular AC 150/5200-33, Hazardous Wildlife Attractants on or Near Airports, precludes the use of plants that animals and birds find attractive. Landscape areas within and adjacent to the new parking area and terminal would meet county code requirements which permit deviations through landscape modification pursuant to SCC 30.25.040 to accommodate the airport’s unique needs. The airport’s USDA wildlife biologist will review and approve landscape plans to ensure compliance with the Paine Field Wildlife Hazard Management Plan. (See: http://www.painefield.com/205/Wildlife-Management).

e. List all noxious weeds and invasive species known to be on or near the site. [help]

There are no known noxious weeds near the site. Himalayan Blackberry (Rubus armeniacus) and Reed-Canary grass (Phalaris arundinacea) exist along roadways and surface waters in surrounding areas.

5. Animals [help]
a. List any birds and other animals which have been observed on or near the site or are known to be on or near the site. [help]

Examples include:

birds: hawk, heron, eagle, songbirds, other:
mammals: deer, bear, elk, beaver, other:
fish: bass, salmon, trout, herring, shellfish, other

b. List any threatened and endangered species known to be on or near the site.

There are no known threatened or endangered species or critical habitat near the site. There is a designated Washington Department of Fish and Wildlife (WDFW) Priority Habitats and Species (PHS) habitat approximately 1,200 feet north of the site known as Paine Field Open Space.

c. Is the site part of a migration route? If so, explain.

The area is part of the Pacific Flyway.

d. Proposed measures to preserve or enhance wildlife, if any.

There are no proposed measures to enhance wildlife. Wildlife in general is considered to be a safety risk to the activities that take place at the airport. Snohomish County Airport-Paine Field developed a Wildlife Hazard Management Plan to address this issue (See: http://www.painefield.com/205/Wildlife-Management).

e. List any invasive animal species known to be on or near the site.

The airport monitors potential wildlife hazards on and around the airport. Enhancing safe aircraft operations by monitoring potential wildlife hazards is a primary objective at Snohomish County Airport-Paine Field. Pursuant to CFR Title 14 Federal Aviation Regulations (FAR) part 139.337(3), Snohomish County Airport-Paine Field developed a Wildlife Hazard Management Plan (See: http://www.painefield.com/205/Wildlife-Management) in cooperation with the U.S. Department of Agriculture’s Wildlife Services program to comply with regulations set forth by the FAA. Habitat on and around the airfield is managed in a manner that is non-conducive to hazardous wildlife.

6. Energy and Natural Resources

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project’s energy needs? Describe whether it will be used for heating, manufacturing, etc.

There would be temporary uses of fuels during construction from trucks and equipment. The proposed terminal would use natural gas and electricity for heating/cooling the building and for lighting. Fuels would be used during operation of commercial aircraft. Most ramp vehicles and equipment including tugs, carts and belt loaders would be electrically powered.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

No, the height of the proposed passenger terminal would be consistent with the heights of adjacent facilities.
c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any: [help]

The design for the proposed terminal will meet or exceed energy requirements in the Washington State Energy Code.

The project is currently in design phase on all building systems and applicable energy conservation features, and possible LEED certifications are being evaluated.

7. Environmental Health [help]
a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste, that could occur as a result of this proposal? If so, describe. [help]

1) Describe any known or possible contamination at the site from present or past uses. [help]

Multiple Phase 1 assessments have been conducted at Snohomish County Airport-Paine Field and other environmental investigations throughout airport property. No known hazardous material sites are located on or within close proximity to the site of the proposed terminal.

2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity. [help]

There are no hazardous conditions that would affect construction of the proposal. Any underground pipelines or utilities would be identified and secured prior to any ground-disturbing activities.

3) Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project’s development or construction, or at any time during the operating life of the project. [help]

During construction and operation of the proposed passenger terminal, fuels, paints, adhesives, and other toxic or hazardous chemicals would be securely stored on site. There would be an increase in aircraft fueling during terminal operation using existing aircraft fueling procedures.

4) Describe special emergency services that might be required. [help]

None.

5) Proposed measures to reduce or control environmental health hazards, if any: [help]

Any use of hazardous materials during construction or operation would be performed according to applicable regulations, including spill prevention measures. If an accident were to occur, immediate corrective actions would occur including notifying the National Response Center. Shut-off valves and other measures in the Stormwater
Industrial Permit would minimize spill impacts. Snohomish County Airport-Paine Field’s spill response plan outlines procedures for rapid response, containment and disposal of hazardous materials.

b. Noise [help]

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment, operation, other)? [help]

Existing noise includes aircraft operations and airport equipment and on-site and off-site traffic. These typical noise sources would not affect construction or operation of the proposal.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site. [help]

Noise contours were prepared and reviewed as part of the 2012 Environmental Assessment and subject to public process. Noise would be created by construction activity in the short term, and by vehicle traffic and aircraft operations in the long term. Construction noise would be temporary and at the highest level during exterior construction.

The proposal would allow for commercial air service, which would increase aircraft operations at the airport slightly. According to the 2012 Environmental Assessment, there would be a 2% or 17.6 acre increase in the 65 Day-Night Average Sound Level (DNL) noise contour (713.6 acres from 696 acres) that would extend off of airport property, but the commercial/industrial land uses surrounding the airport would be compatible with this level of aircraft noise. The 65 DNL is used as the FAA’s threshold of significance when determining noise impacts. There would be no residential or other noise sensitive receptors within the future 65 DNL contour.

3) Proposed measures to reduce or control noise impacts, if any: [help]

Construction and operation would comply with the Snohomish County Noise Ordinance. The airport also has an active noise abatement program to reduce the noise impacts of approaches and departures from multiple aircraft types including those associated with this proposal (See: http://www.painefield.com/159/Noise-Abatement-Procedures).

8. Land and Shoreline Use [help]

a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe. [help]

The project site for the proposal is approximately 12 acres within the boundaries of Snohomish County Airport-Paine Field. The airport’s administrative offices, aviation businesses, an aviation-related technical school and the airport’s control tower surround the project site.
b. Has the project site been used as working farmlands or working forest lands? If so, describe.
 How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use? [help]

 No.

1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how? [help]

 No.

c. Describe any structures on the site. [help]

 The site is currently occupied by surface parking, vegetated infield, and a small metal pole barn-style shed used for vehicle storage.

d. Will any structures be demolished? If so, what? [help]

 A small metal pole barn-style vehicle storage shed would be disassembled. This structure is less than 50 years old and ineligible for listing as a historic resource. No other structures would be demolished.

e. What is the current zoning classification of the site? [help]

 The airport is zoned as Light Industrial in unincorporated Snohomish County.

f. What is the current comprehensive plan designation of the site? [help]

 Snohomish County Airport-Paine Field and the immediate surrounding area are designated as the Paine Field Area Manufacturing Industrial (MIC) Overlay (Snohomish County 2015).

g. If applicable, what is the current shoreline master program designation of the site? [help]

 Not applicable.

h. Has any part of the site been classified as a critical area by the city or county? If so, specify. [help]

 No.

i. Approximately how many people would reside or work in the completed project? [help]

 An estimated 30-50 permanent employees would work at the proposed terminal once commercial airline service begins.

j. Approximately how many people would the completed project displace? [help]
None.

k. Proposed measures to avoid or reduce displacement impacts, if any: [help]

No measures are required or proposed.

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any: [help]

The proposed project will be compliant with the Paine Field Airport Master Plan, the Snohomish County Code and appropriate Snohomish Comprehensive Plan land use designation. No measures are required or proposed.

m. Proposed measures to ensure the proposal is compatible with nearby agricultural and forest lands of long-term commercial significance, if any: [help]

No measures are required or proposed.

9. Housing [help]

a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing. [help]

None.

b. Approximately how many units, if any, would be eliminated? Indicate whether high, middle, or low-income housing. [help]

None.

c. Proposed measures to reduce or control housing impacts, if any: [help]

No measures are proposed.

10. Aesthetics [help]

a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed? [help]

The proposed passenger terminal would be approximately 30 feet tall with siding containing a mix of glass, wood, metal and aggregate.

b. What views in the immediate vicinity would be altered or obstructed? [help]

The proposed terminal and parking facilities would be compatible with the existing airport, and no views would be altered or obstructed. See Figures 6a and 6b for overall and enlarged exterior elevations.

c. Proposed measures to reduce or control aesthetic impacts, if any: [help]
The proposed passenger terminal would be constructed with a Northwest Lodge character, high-quality materials, well-proportioned forms, appropriately scaled massing, an articulated façade and context-sensitive landscaping. No other measures are required or proposed.

11. Light and Glare [help]

a. What type of light or glare will the proposal produce? What time of day would it mainly occur? [help]

There would be a slight change to the light environment around the airport due to increased lighting at night for the proposed terminal and for the commercial airport parking facilities.

b. Could light or glare from the finished project be a safety hazard or interfere with views? [help]

The main lights at the airport are the FAA-required lighting for runways, taxiways and navigation. The proposal would not substantially change the existing airport lighting. New lighting would have downward directed fixtures to reduce glare beyond the perimeter of the site. The airport is surrounded by mostly industrial areas, and lighting improvements are not anticipated to be a safety hazard or interfere with views.

c. What existing off-site sources of light or glare may affect your proposal? [help]

Surrounding industrial areas would not affect construction or operation of the proposal.

d. Proposed measures to reduce or control light and glare impacts, if any: [help]

Light and glare from the proposed action would be designed to not interfere with ongoing operations at the airport, adjacent roadways or other adjacent facilities. Aircraft lighting is governed by FAA. The proposal will be reviewed by FAA to ensure it does not result in light, glare or visibility impacts to air traffic.

12. Recreation [help]

a. What designated and informal recreational opportunities are in the immediate vicinity? [help]

The City of Everett’s Kasch Park is located about ¾ mile to the east, and the Paine Field Community Park is located about 1 mile to the south of the proposal.

b. Would the proposed project displace any existing recreational uses? If so, describe. [help]

No.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any: [help]

No measures are proposed.

13. Historic and cultural preservation [help]
a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? If so, specifically describe. [help]

The Area of Potential Effects (APE) included the proposed terminal area and the area within the 65 DNL contour (see Noise section). A review of 49 facilities listed on the National Register of Historic Places for Snohomish County was conducted. No historical, architectural, archaeological or cultural sites are known to exist on airport property.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources. [help]

No historical, architectural, archaeological or cultural sites are known to exist on the site.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archaeology and historic preservation, archaeological surveys, historic maps, GIS data, etc. [help]

The FAA initiated Section 106 consultation with the Department of Archaeology and Historic Preservation (DAHP) in September 2009. The FAA also initiated both Section 106 and government-to-government consultation with the Stillaguamish, Saut-Suiattle and Tulalip Tribes in September 2009.

The FAA received responses from the Department of Archaeology & Historic Preservation and the Tulalip Tribes that can be found in the appendices of the Final Environmental Assessment.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required. [help]

If historic archaeological items are found, construction will cease immediately and appropriate agencies, including the DAHP, will be contacted.

14. Transportation [help]

a. Identify public streets and highways serving the site or affected geographic area and describe proposed access to the existing street system. Show on site plans, if any. [help]

The Airport Road/128th Street SW corridor provides the most direct access to the terminal entrance and passes through the east side of airport property. Airport Road connects with I-5 approximately 3 miles southeast of the airport where it becomes SR 96, and with Boeing Freeway (SR 526) at the north side of the airport which connects with I-5 4 miles east. Direct landside access to airport property is provided by a series of streets with access to the terminal area provided by 100th Street SW.
b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop? [help]

Yes, Everett Transit and Community Transit provides service on Airport Road at the 100th Street SW and 94th Street SW intersections.

c. How many additional parking spaces would the completed project or non-project proposal have? How many would the project or proposal eliminate? [help]

The project will add 210 parking stalls for a total of approximately 600 by reconfiguring existing parking lots and other paved areas and paving approximately 1 acre of grass. The proposed project parking complies with SCC 30.26 and the Uniform Development Code.

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe. [help]

The proposed parking facilities will be accessed off of 100th Street SW. Existing sidewalk/pedestrian facilities from Airport Road along 100th Street SW to the existing terminal will be extended to the new passenger terminal.

e. Will the project or proposal use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe. [help]

The proposed project is located on Snohomish County Airport-Paine Field which currently has no scheduled commercial air service. The proposal would construct the terminal for commercial air service as described in the 2012 FAA FONS/ROD. WSDOT ferry to Clinton on Whidbey Island and Sound Transit’s Sounder commuter rail to Edmunds, Everett and Seattle both provide service at Mukilteo are located less than 5 miles from the proposed project site. A small amount of passenger traffic may potentially use those facilities.

f. How many vehicular trips per day would be generated by the completed project or proposal? If known, indicate when peak volumes would occur and what percentage of the volume would be trucks (such as commercial and nonpassenger vehicles). What data or transportation models were used to make these estimates? [help]

As discussed in the attached Gibson 2016 Traffic Impact Analysis, the proposed passenger terminal is anticipated to generate 922 new average daily trips by terminal employees and airline passengers. The maximum anticipated trips during the peak-hour have been estimated at 212 trips. The trip generation calculations are based on the assumption that there would be one flight arrival and one departure at each of the gates during one hour. Based on data gathered at similar airports, this is a conservatively high assumption since the time for one complete arrival and departure at each gate is closer to two hours. The peak-hour trip generation of the proposed terminal has been assumed to occur during the AM and PM peak-hours of the adjacent streets.
(including Airport Road, Airport Road/128th Street SW and Beverly Park Road) to account for the greatest impact on the operations of the surrounding street system.

The proposed completed project is expected to generate marginal additional truck traffic. This estimate is supported by the Institute for Traffic Engineers (ITE) Trip Generation Manual, according to which trucks account for less than 1 percent of the trips generated by commercial airports.

The trip generation calculations are based on anticipated operations provided by the project proponent, data collected at Bellingham International Airport, discussions with Snohomish County's traffic engineer and a comparison to ITE data. The distribution of trips is based on regional modeling information provided by PSRC, review by the Snohomish County Traffic Engineer with consultation from the Snohomish County traffic modeling group, City of Everett staff, traffic studies approved in the site vicinity and peak-hour turning movement counts at the surrounding intersections.

g. Will the proposal interfere with, affect or be affected by the movement of agricultural and forest products on roads or streets in the area? If so, generally describe. [help]

No.

h. Proposed measures to reduce or control transportation impacts, if any: [help]

Vehicle traffic impacts of the proposed terminal would be mitigated based on the payment of established traffic mitigation fees for Snohomish County and the surrounding jurisdictions based on the volume of projected traffic. This would include fees to Snohomish County, the Washington State Department of Transportation (WSDOT) and the City of Mukilteo. These traffic mitigation fees will help fund roadway improvements identified by Snohomish County and the surrounding jurisdictions.

A Transportation Demand Management (TDM) site plan will be prepared per the Snohomish County Code. This will show the pedestrian connectivity, bicycle parking, and ADA access.

15. Public Services [help]

a. Would the project result in an increased need for public services (for example: fire protection, police protection, public transit, health care, schools, other)? If so, generally describe. [help]

Yes, security at the proposed passenger terminal will be provided by the TSA, a division of the U.S. Department of Homeland Security Local law Enforcement will be provided by the Snohomish County Sheriff, and building fire protection and aircraft rescue and firefighting by the Snohomish County Airport Fire Department.

b. Proposed measures to reduce or control direct impacts on public services, if any. [help]

Additional local law enforcement and firefighting personal required for the proposed terminal operations will be funded by the terminal operator.
16. Utilities [help]

a. Circle utilities currently available at the site: [help]
 electricity, natural gas, water, refuse service, telephone, sanitary sewer, septic system, other ____________

b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed. [help]

 The proposal would require connections for electricity (Snohomish County PUD #1), natural gas (Puget Sound Energy), telephone/data service (Verizon), and water and sewer services (Mukilteo Water and Wastewater District). Refuse services are provided by Waste Management Northwest.

C. Signature [help]

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature: ______________________
Name of signee: ______________________
Position and Agency/Organization: COD
Date Submitted: 6/0/16
DATE: December 21, 2016

TO: Mark Reichin
Propeller Airports LLC

FROM: Paul Dunholter, P.E.
BridgeNet International

SUBJECT: Snohomish County Airport (Paine Field) AEDT Noise Contour Update

BACKGROUND

The following memo presents the results of the update of the 2018 noise contours from the Commercial Air Service Environmental Assessment. The noise contours were update using the latest FAA noise model, AEDT 2c. The AEDT (Aviation Environmental Design Tool) is the most recent evolution of the noise models developed by the FAA (Federal Aviation Administration). It replaces the INM (Integrated Noise Model) that was used in the EA (Environmental Assessment) study. The new model was developed by the FAA in order to combine into one model all their environmental modelling requirements. This includes single airport noise analysis, multi airport airspace noise analysis, air quality emissions, greenhouse gases and fuel consumption. The model also advanced the aircraft noise prediction process, added the ability to import and utilize radar data, weather and GIS information that was not supported in the previous model.

The new AEDT model uses the same underlying acoustic principals and aircraft base data as the INM, with more advanced features, parameter adjustments and plotting capabilities. For the same assumptions, the noise contours from the two models are generally similar but there can be some differences in the size and shape of the contours.

The scope of this project is to use the assumptions from the EA study and update the noise contours with the new noise model. The study updated the future year 2018 model runs for the
Base No Action conditions, the With Commercial Service Project conditions and the With Commercial Service Conditions at the Maximum Thruput conditions.

The contour modeling update uses the same modeling assumptions presented in the EA with the following differences. At the time of the study, the INM noise modeling database did not yet have some of the new generation Boeing aircraft (747-8 and 787) being flown at Paine Field so substitute aircraft were used. The updated modeling study will use the actual aircraft as they are in the new AEDT noise model database. The modeling study also evaluated the potential of different aircraft to be used for the proposed commercial service. The original study assumed DASH8-Q400 and MD83 aircraft. The updated modeling study also evaluated the noise assuming EMB175 and 737800 aircraft would be used for the commercial service instead. The number of operations for both the With Project and Maximum Thruput remained the same as presented in the EA. The EA used the term “No Action Alternative” for the “Base Case” conditions in 2018, and used the term “Preferred Alternative” for the “With Project” conditions in 2018.

MODELING RESULTS

The following noise model runs were completed using the AEDT 2c noise model. These runs are the same as the final year (2018) evaluated in the EA, and used the operational assumptions that were presented in the EA, unless noted below. As with the EA, DNL noise contours for the 70 and 65 DNL noise level were developed. Each of the model runs are listed below, along with the assumptions used. The noise contour results are presented in Figures 1 through 4. Figure 1 and 2 present individual contours. Figures 3 and 4 present the contours for the No Action, With Project and With Project with Max Thruput combined into one figure. Figure 3 assumes that the revised commercial aircraft are used, while Figure 4 assumes that the original commercial aircraft are used. For comparative purposes, the 2018 noise contours from the EA are presented at the end of this document.

Figure 1 - 2018 Original Assumptions No Action
- Original Boeing Aircraft Substitutions

Figure 2 - Updated 2018 No Action
- Updated Actual Boeing Aircraft, No Substitutions

Figure 3 - Updated 2018 No Action, With Project and Max Thruput (Revised Commercial Aircraft)
- Updated Actual Boeing Aircraft, No Substitutions
- Revised Commercial Operations (EMB175 and 737800)

Figure 4 - Updated 2018 No Action, With Project and Max Thruput (Original Commercial Aircraft)
- Updated Actual Boeing Aircraft, No Substitutions
- Original Commercial Operations (Q400 and MD80)
The results of the noise contour analysis show that the noise contours are similar in size and shape to those that were generated in the EA. These results are presented in Table 1. This table presents the noise contour area for each of the model runs for acres within the 65 DNL noise contour. These AEDT noise contours are slightly larger than the INM contours with the change more associated with the run-up and general aviation runway, then operations on the main runway. Note that General Aviation operations and run-up activity is airport operational activity that is not affected by the potential commercial service.

The 65 DNL noise contour for the 2018 No Action alternative from the EA using the INM noise model was 696 acres in size. Using the same assumptions, the size of the contour using the AEDT noise model was 732 acres. A 5% increase in size. For Updated No Action using actual Boeing aircraft, the noise contours are slightly smaller, 709 acres. This is because the actual aircraft are quieter than the aircraft used as substitutes. The with project noise contours (for both the preferred alternative forecast conditions along with the maximum throughput conditions) are slightly larger for the revised commercial aircraft than those assumed in the EA. The MD83 is a louder aircraft than the 737800, However the EMB175 is a louder aircraft than the DASH8-Q400, and there are more of those aircraft assumed than with the MD83.

As with the EA contours, there are no population or noise sensitive land uses within the noise contours.
Table 1

Noise Contour Size (65 DNL)
Using AEDT 2C Noise Model

<table>
<thead>
<tr>
<th>Figure</th>
<th>MODEL RUN</th>
<th>CONTOUR AREA (Acres) (65 DNL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Action</td>
<td></td>
</tr>
<tr>
<td>Figure 1</td>
<td>2018 Original Assumptions No Action (Original Boeing Aircraft Subs)</td>
<td>732</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Updated 2018 No Action (Actual Boeing Aircraft, No Substations)</td>
<td>709</td>
</tr>
<tr>
<td></td>
<td>With Project (Revised Commercial Aircraft)</td>
<td></td>
</tr>
<tr>
<td>Figure 3</td>
<td>Updated 2018 With Project (Revised Commercial Aircraft)</td>
<td>744</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Updated 2018 With Max Thruput (Revised Commercial Aircraft)</td>
<td>798</td>
</tr>
<tr>
<td></td>
<td>With Project (Original Commercial Aircraft)</td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>Updated 2018 With Project (Original Commercial Aircraft)</td>
<td>732</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Updated 2018 With Max Thruput (Original Commercial Aircraft)</td>
<td>791</td>
</tr>
</tbody>
</table>

OPERATIONAL ASSUMPTIONS

The noise contours were generated based upon the EA 2018 forecast operations assumptions. These forecast operations predicted future activity levels in terms of total operations and operations by different categories and types of aircraft. These categories include general aviation, corporate jets, Boeing, air taxi and military. These 2018 forecast operations were compared to the most recent 12 months of activity at the airport. The results show that the current operations and the forecast 2018 operations are similar in terms of total activity and types of activity. It is our opinion that noise contours developed based upon current activity would be similar to those predicted based upon the 2018 forecast activity level.
Figure 1
2018 Original Assumptions Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AFDI Noise Model
- EA 2018 Operational Assumptions
- Original Boeing Aircraft Substitutions

Source: BridgeNet International 2016
Figure 2
Updated 2018 Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions

Source: BridgeNet International 2016
Figure 3
Updated 2018 No Action, With Project and Max Thruput Noise Contours
Revised Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- FA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft. No Substitutions
- Revised Commercial Operations (EMB175 and 737800)

Source: BridgeNet International 2016
Figure 4
Updated 2018 No Action, With Project and Max Thruput Noise Contours
Original Commercial Operations -- (65 and 70 DNL)

SNOHOMISH COUNTY (PAINE FIELD) AIRPORT NOISE CONTOUR UPDATE (2016)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Original Commercial Operations (DASH8-Q400 and MD83)

Source: BridgeNet International 2016
Figure 1a
2018 Original Assumptions Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Original Boeing Aircraft Substitutions

Source: BridgeNet International 2016
Figure 2a
Updated 2018 Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated/Actual Boeing Aircraft, No Substitutions

2018 DNL Noise Contours
Base Conditions

Source: BridgeNet International 2016
Figure 3a
Updated 2018 No Action, With Project and Max Thruput Noise Contours
Revised Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Revised Commercial Operations (EMB 175 and 787/800)

2018 DNL NOISE CONTOURS
No Action Conditions
With Project Conditions
With Max Thruput

Source: BridgeNet International 2016
Figure 4a
Updated 2018 No Action, With Project and Max Thruput Noise Contours
Original Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Original Commercial Operations (DASH8-Q400 and MD83)

2018 DNL Noise Contours
No Action Conditions
With Project Conditions
With Max Thruput

Source: BridgeNet International 2016
Environmental Assessment Figures
Figure D4 Future Noise Contours (2018) without Project.
Figure D6 Future Noise Contours (2018) with Project

Source: Google Maps-June 2010.
Figure D2 Future Noise Contours (2018) with and without Project.

Source: Google Maps-June 2016.
DATE: February 2, 2017

TO: Mark Reichin
 Propeller Airports LLC

FROM: Paul Dunholter, P.E.
 BridgeNet International

SUBJECT: Snohomish County Airport Commercial Service EA Noise Assessment -
 AEDT Noise Contour Update

BACKGROUND

The following memo presents the results of the updated 2018 noise contours from the Commercial Air Service Environmental Assessment (EA) at Paine Field, referred to as the contour modeling update or project. The EA shows no significant foreseeable adverse noise impacts associated with the proposal. Nor does the update. The noise contours were updated using the latest Federal Aviation Administration (FAA) noise model, Aviation Environmental Design Tool (AEDT) Version 2c. AEDT is the most recent evolution of the noise models developed by the FAA; it replaced the Integrated Noise Model (INM) that was used in the EA study. AEDT was developed by the FAA to combine its multiple environmental modeling requirements into one model, including single airport noise analysis, multi-airport airspace noise analysis, air quality emissions, greenhouse gases and fuel consumption. This model also enhanced the aircraft noise prediction process, added the ability to import and utilize radar data, weather and GIS information that was not supported in INM.

The new AEDT model uses the same underlying acoustic principals and aircraft base data as the INM, with more advanced features, new aircraft types, parameter adjustments and plotting capabilities. Given the same assumptions, the noise contours generated by the two models are generally similar but there can be some differences in the size and shape of the contours generated from the same data and assumptions that were contained in the original EA analysis.
The scope of this project is to use the assumptions from the EA study and update the noise contours utilizing the new AEDT noise model. This study evaluated the following model runs from the original report in the EA using the new AEDT noise model. These include:

- 2018 No Action conditions
- 2018 With Commercial Service Project conditions
- 2018 With Commercial Service Conditions at the Maximum Throughput conditions that were presented in the Appendix P of the EA (also referred to as the Hursh Report).

The contour modeling update used the same modeling assumptions presented in the EA with the following differences explained as herein.

1. **Boeing Aircraft Company Aircraft Types.** At the time of the study, the INM database did not contain data for new Boeing commercial aircraft types (747-8 and 787) being built and flown at Paine Field; thus, per FAA guidelines, substitute aircraft were used. This updated study used the actual aircraft types that are now contained in the AEDT noise model database.

2. **Assumed Commercial Aircraft Types.** The EA assumed that the commercial aircraft would be served by the MD80 series commercial jet (MD83 in the noise model) and the Dash8-Q400 (referred to as the Q400) turboprop for the regional service. In addition to these previously modeled aircraft, this contour modeling update also evaluated other aircraft (referenced throughout this document as “Current generation”) that could possibly be used for the proposed commercial and regional service. It is important to note that many air carriers are replacing their older aircraft (such as the MD80 series) with newer, quieter, more fuel-efficient aircraft, for example, the Airbus A320 series and the Boeing 737 series. The Dash8-Q400 turboprop is also being replaced by regional jets such as the EMB175. This study modeled both the aircraft analyzed in the EA (MD83/Q400) as well as the Current Generation regional and narrow-body commercial jets that are flown today and assumed to be in service within the project’s planning horizon found in the EA.

This study also evaluated the EMB175 and 737800 aircraft as Current Generation regional and commercial aircraft, respectively (Note: Carrier Allegiant has been updating its fleet from MD80 series aircraft to Airbus A320 type aircraft and Horizon is adding EMB175 while reducing their Q400 fleet). The EMB175 is a regional jet of similar size to the Q400 turboprop aircraft and generates greater noise than the Q400. The 737800 is one of many types of narrow-body aircraft of similar size and engine type (737700, A319, A320, A319NEO, A320NEO, 737-7MAX and 737-8MAX) that could be used to provide the commercial service. The Airbus NEO and Boeing MAX are the next generation version of the same legacy aircraft, with updated engines and technology that result in lower noise levels than the current aircraft models. However, AEDT does not contain aircraft data for these planes. The 737800 represents an aircraft from a
similar fleet of aircraft types that the noise model shows will generate noise at the higher end of the noise range of these aircraft including the A320 series used by Allegiant. This approach presents a more conservative noise contour.

3. **Maximum Throughput Operations.** The number of commercial service operations for both the “With Project” and “Maximum Throughput” used the same assumptions as presented in the EA. The EA used the term “No Action Alternative” for the “Base Case” conditions in 2018, and used the term “Preferred Alternative” for the “With Project” conditions in 2018. The “Maximum Throughput” assumptions were derived from the “Hursh Study” (presented in Appendix P of the EA) that assumed six departures of the regional aircraft (Q400) and six of the commercial aircraft (MD83) for a total of 12 departures (24 operations) per day. The Maximum Throughput refers to the maximum number of operations per day that could reasonably be assumed to operate at the proposed terminal.

While the Hursh Study represented a reasonable prediction of the maximum use of the terminal, to further illustrate a maximum throughput evaluation, another revised alternative is presented. This alternative increased the maximum throughput assumptions from six to eight departures per day for each aircraft type for a total of 16 departures (32 operations) per day. This alternative was developed to represent an increase of 33% over what the EA estimated Maximum Throughput. The Maximum Throughput assumptions in the EA was the predicted number of maximum departures per day that could be used at each gate. (Noise contours for the Revised Maximum Throughput were modelled using the EMB175/737800 assumptions case in that they result in the larger noise contours and represent the worst case of the two commercial operational assumptions.)

For this revised worst-case maximum throughput modeling analysis, the study modeled some additional operations that could occur. In the DNL noise metric, nighttime is defined as 10:00 pm to 7:00 am. The DNL noise metric includes a nighttime penalty during these hours to account for the increased sensitivity to aircraft noise during the nighttime hours. For the revised commercial service operations, we modeled one departure and one arrival of the 737-800 aircraft and two departures and one arrival of the EMB175 aircraft in the nighttime hours.

In my professional opinion and extensive personal knowledge of airport terminal operations, that based on reasonably foreseeable “full” operations at each gate, eight (8) turns per gate, per day is a reasonable assumption. Calculating the maximum reasonable capacity of the terminal requires a series of forecasts and professional judgments. This presents a more conservative prediction by increasing that number by 33% and assumed more of these operations in the “nighttime hours.” The NEPA document and the SEPA document both make reasonable conclusions about the probable, most likely use of the terminal but this additional analysis looks
at a reasonable worst case or maximum capacity scenario, that is a scenario in which the terminal is used to its maximum practical capacity.

Forecasting the maximum reasonable or practical capacity of the terminal requires assessment of a number of variables: the number of hours a day when aircraft that will reasonably use the terminal (it is not reasonable to assume use of the terminal 24/7; no terminal is used in this manner); the number of aircraft “turns” (each airport has different operating characteristics, e.g., number of gates, and each airline has different operational practices for how quickly they turn an aircraft); what type and size of aircraft will be used (while each airline has a known fleet today, forecasting the future fleet requires an understanding of industry dynamics, each airline’s business model, aircraft retirement schedules, and the types and density of routes that the airline will fly); and the seat capacity of the aircraft that will be used (not only does each aircraft have a different physical capacity but each airline outfits their aircraft with different seat configurations and each airline operates a different average load factor).

As an example, using the Original Aircraft Fleet, and factors and available industry data, it is reasonable to assume that carriers using the terminal would operate as follows under a maximum practical capacity scenario.

- Allegiant will operate MD80 series aircraft with an average of 166 seats per aircraft and a load factor of 83 percent. (as noted in Allegiant’s public disclosure documents)
- Horizon will operate Q400 aircraft with an average of 76 seats and a load factor of 80 percent. (as noted in Horizon’s public disclosure documents)

MODELING RESULTS

This section presents the DNL noise modeling results for “No Action”, “With Commercial Service”, “With Commercial Service Maximum Throughput” and “Maximum Throughput Revised Alternative”. The “No Action” run is the same as the final year (2018) evaluated in the EA, and used the operational assumptions that were presented in the EA unless noted below. As presented in the NEPA EA, DNL noise contours for the 70 and 65 DNL noise level were developed in this Noise Contour Update. Each of the model runs are listed below, along with the assumptions used.

The noise contour results are presented in Figures 1 through 5. Figure 1 and 2 present individual contours for 2018 No Action conditions. Figures 3, 4 and 5 present the contours for the “No Action”, “With Project” and “With Project with Max Throughput” combined into one figure. Figure 3 assumes that the original commercial aircraft are used, while Figure 4 assumes that the Current Generation commercial aircraft are used; “original commercial aircraft” refers to the Q400 and MD83 while “Current Generation commercial aircraft” refers to the 737800
and EMB175 aircraft. Figures 3 and 4 use the original assumptions for the “Maximum Throughput” (6 departures per day per aircraft type). Figure 5 uses the “Revised Maximum Throughput” and Current Generation commercial aircraft (8 departures per day per aircraft type). Figures 1a through 5a present the same information, but on an aerial base map. For comparative purposes, the 2018 noise contours from the EA are presented at the end of this document.

Figure 1 - 2018 Original Assumptions No Action
 - Original Boeing Aircraft Substitutions

Figure 2 - Updated 2018 No Action
 - Updated Actual Boeing Aircraft, No Substitutions

Figure 3 - Updated 2018 No Action, With Project and Original Max Throughput (Original Commercial Aircraft)
 - Updated Actual Boeing Aircraft, No Substitutions
 - Original Commercial Operations (Q400 and MD80)
 - Original Max Throughput of 12 departures per day (6 Regional and 6 Commercial)

Figure 4 - Updated 2018 No Action, With Project and Original Max Throughput (Current Generation Commercial Aircraft)
 - Updated Actual Boeing Aircraft, No Substitutions
 - Current Generation Commercial Operations (EMB175 and 737800)
 - Original Max Throughput of 12 departures per day (6 Regional and 6 Commercial)

Figure 5 - Updated 2018 No Action, With Project and Revised Max Throughput (Current Generation Commercial Aircraft)
 - Updated Actual Boeing Aircraft, No Substitutions
 - Current Generation Commercial Operations (EMB175 and 737800)
 - Revised Max throughput of 16 departures per day (8 Regional and 8 Commercial)

The results of the noise contour analysis show that the noise contours generated in this project are similar in size and shape for each of the alternatives to those that were generated in the NEPA EA. The 65 DNL noise contour for the 2018 “No Action alternative” from the EA using the INM noise model was 696 acres in size. Using the same assumptions, the size of the contour using the AEDT noise model was 732 acres. This is a small increase that is difficult to visually see the difference.

These results are presented in Table 1, which shows the total acres in the 65 DNL for each of the model runs. These AEDT noise contours are slightly larger than the INM contours; this change is most attributable to the engine run-up and general aviation runway than operations on the main runway. Note that general aviation operations and engine run-up activity is airport operational activity that is not part of or affected by the Commercial Service Project.
For the Updated No Action using actual Boeing aircraft types (and not substitute types), the noise contours are slightly smaller, 709 acres. This is attributed to the actual aircraft being quieter than the aircraft used as substitutes in the NEPA EA. The “With-Project” noise contours (for both the “With Project Commercial Service” and “Maximum Throughput” conditions) are slightly larger for the Current Generation commercial aircraft (EMB175/737800) than those originally assumed in the EA (Q400/MD83). The MD83 is a louder aircraft than the 737800; however, the EMB175 is a louder aircraft than the Q400.

The “Revised Maximum Throughput” DNL noise contours with eight departures for each aircraft type per day (16 departures total/32 operations) resulted in a bit larger contours than those based upon the original “Maximum Throughput” contours (six departures for each aircraft type). The contour area of the 65 DNL increased from 798 acres to 835 acres. This increase of 37 acres is attributable to the increase from 6 to 8 departures per day and the added modeling assumption of the greater number of night operations.

As with the NEPA EA contours, there are no population or noise sensitive land uses within the 70 or 65 DNL noise contours. This is the same for the “Original Maximum Throughput” and the “Revised Maximum Throughput” assumptions.

Table 1
Noise Contour Size (65 DNL)
AEDT 2C Noise Model

<table>
<thead>
<tr>
<th>Figure</th>
<th>MODEL RUN</th>
<th>CONTOUR AREA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Acres (65 DNL)</td>
<td></td>
</tr>
<tr>
<td>No Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 1</td>
<td>2018 Original Assumptions No Action (Original Boeing Aircraft Subs)</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>Figure 2</td>
<td>Updated 2018 No Action (Actual Boeing Aircraft, No Substations)</td>
<td>709</td>
<td></td>
</tr>
<tr>
<td>With Project (Original Commercial Aircraft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 3</td>
<td>Updated 2018 With Project (Original Commercial Aircraft)</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>Figure 3</td>
<td>Updated 2018 With Original Max Throughput (Original Commercial Aircraft)</td>
<td>791</td>
<td></td>
</tr>
<tr>
<td>With Project (Current Generation Commercial Aircraft)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>Updated 2018 With Project (Current Generation Commercial Aircraft)</td>
<td>744</td>
<td></td>
</tr>
<tr>
<td>Figure 4</td>
<td>Updated 2018 With Original Max Throughput (Current Generation Commercial Aircraft)</td>
<td>798</td>
<td></td>
</tr>
<tr>
<td>Figure 5</td>
<td>Updated 2018 With Revised Max Throughput (Current Generation Commercial Aircraft)</td>
<td>835</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

The DNL noise contours were generated based upon the EA 2018 forecast operations assumptions. These forecast operations predicted future activity levels in terms of total operations and operations by different categories and types of aircraft. These categories include general aviation, corporate jets, Boeing commercial aircraft, air taxi and military. These 2018 forecast operations were compared to the most recent 12 months (November 2015 through October 2016) of activity at the airport from the Traffic Flow Management System Counts (TFMSC). This data does not include operations from small aircraft flying visual flight rules but does include most aircraft that operate in the National Airspace System (NAS). The results show that the current operations and the forecast 2018 operations are similar in terms of total activity and types of activity. It is my professional opinion that noise contours and impacts developed based upon current activity would be similar to those predicted based upon the 2018 forecast activity level contained in the NEPA EA. Again, the EA analysis and this update to the contours demonstrates that noise associated with Propeller Airports’ project is below the FAA’s thresholds of significance.
Figure 1
2018 Original Assumptions Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Original Boeing Aircraft Substitutions

Source: BridgeNet International 2017
Figure 2
Updated 2018 Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions

2018 DNL Noise Contours
Base Conditions

Source: BridgeNet International 2017
Figure 3
Updated 2018 No Action, With Project and Max Throughput Noise Contours
Original Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- FA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Original Commercial Operations (DASH B707 and MD83)
- Original Max Throughput of 12 Departures per Day

Source: BridgeNet International 2017
Figure 4
Updated 2018 No Action, With Project and Max Throughput Noise Contours
Current Generation Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- F/A 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Current Generation Commercial Operations (EMB175 and 737800)
- Original Max Throughput of 12 Departures per Day

2018 DNL Noise Contours
No Action Conditions
With Project Conditions
With Max Throughput

Source: BridgeNet International 2017
Figure 5
Updated 2018 No Action, With Project and Revised Max Throughput Noise Contours Current Generation Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Current Generation Commercial Operations (FM86 and FM87)
- Revised Max Throughput of 16 Departures per Day

2018 DNL NOISE CONTOURS
No Action Conditions
With Project Conditions
Rev Max Throughput
Figure 1a
2018 Original Assumptions Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Original Boeing Aircraft Substitutions

Source: BridgeNet International 2017
Figure 2a
Updated 2018 Base Case Noise Contours (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- FA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions

Source: BridgeNet International 2017
Figure 3a
Updated 2018 No Action, With Project and Max Throughput Noise Contours
Original Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated/Actual Boeing Aircraft, No Substitutions
- Original Commercial Operations (DASH 8, O400 and MD83)
- Original Max throughput of 12 Departures per Day

2018 DNL NOISE CONTOURS
No Action Conditions
With Project Conditions
With Max Throughput

Source: BridgeNet International 2017
Figure 4a

Updated 2018 No Action, With Project and Max Throughput Noise Contours
Current Generation Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AEDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Current Generation Commercial Operations (EMB175 and 737800)
- Original Max Throughput of 12 Departures per Day

Source: BridgeNet International 2017
Figure 5a
Updated 2018 No Action, With Project and Revised Max Throughput Noise Contours Current Generation Commercial Operations -- (65 and 70 DNL)

Assumptions:
- AFDT Noise Model
- LA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions
- Current Generation Commercial Operations (EMB175 and 737800)
- Revised Max Throughput of 16 Departures per Day

Source: BridgeNet International 2017
Environmental Assessment Figures
Figure D6 Future Noise Contours (2018) with Project
Figure D2: Future Noise Contours (2018) with and without Project

Figure 1 Future Noise Contours (2018) Max Thruput

Source: Google Maps-June 2010.
DATE: February 2, 2017

TO: Mark Reichin
 Propeller Airports LLC

FROM: Paul Dunholter, P.E.
 BridgeNet International

SUBJECT: Snohomish County Airport Commercial Service EA Noise Assessment -
 Response to Comments

BACKGROUND

The following memo is a response to the comments outlined in the memo “Recommended revisions to noise analysis in EA/FONSI to support incorporation into SEPA” prepared by Jason Volt on September 16, 2016. The memo listed 12 comments that are addressed below. In addition to the response to the comments, the noise contours from the Environmental Assessment (EA) were updated using the FAA’s new AEDT noise model. The results of contour updates are presented in a separate memo report dated February 1, 2017, “Snohomish County Airport (Paine Field) AEDT Noise Contour Update.”

The contour update included modeling the original commercial aircraft studied in the NEPA EA as well as alternative commercial aircraft. The “original commercial aircraft” refers to the Q400 regional turbo prop aircraft and MD83 commercial aircraft assumed in the EA, while “Current Generation” refers to the EMB175 regional aircraft and 737800 commercial aircraft that reflect common aircraft used today and assumed to be in service within the planning horizon of the NEPA EA. The Maximum Throughput was also evaluated in that memo for both the assumptions presented in the EA and with an assumed higher level of activity.
RESPONSE TO COMMENTS

1. Why are counts of operations in the base case (2008) higher than future year 2013 or future year 2018 operations? This is not intuitive. Existing operations numbers should be explained when the report is updated with the base case of 2016 or 2017.

 As is the case with the national trend, general aviation (GA) operations have tended to decrease at airports around the Country, and the majority of operations at PAE are general aviation. The actual operation counts since the time of the EA supports that prediction; in 2015 (last full year of data) the total operations at the airport were less than the base year 2008. According to the FAA Operations Network Airport Activity Report (OPSNET), the total 2015 operations at PAE was 112,788 annual operations. This compares to the 143,722 annual operations in 2008. The EA forecasted 113,787 annual operations for 2018. The most recent prediction of future operations at the airport (FAA Terminal Area Forecast (TAF)) estimates 103,100 annual operations for 2018. In summary, the EA forecast of the future operational levels are consistent with the operation levels that have actually occurred at the airport.

2. The total number of operations in 2008 is higher than in 2013 or 2018. But, less land area is enclosed by the 65-decibel day/night noise level (65 DNL) contour in 2008 compared to 2013 or 2018. Does the 79% increase in air carrier service offset/exceed the effects of the decrease in General Aviation (GA) service? Operations factors of this kind should be explained once the model is updated.

 In general, the air carrier category of aircraft is predominately commercial-size turbine jets that generate significantly more noise than the smaller GA piston engine aircraft. The corporate jet category of aircraft also generates higher noise levels then the smaller piston aircraft. Thus, the noise contours increase in size in the future as a result of the forecast growth of air carrier category operations. This more than offsets the forecast reduction in smaller piston general aviation aircraft operations. These comments must be read in conjunction with the aircraft expected to serve the proposed project. See Response No. 9, infra.

 The future out-year noise contours for the EA (and updated using the AEDT noise model) were generated based upon the EA forecast operations assumptions for 2018. These forecast operations predicted future activity levels in terms of total operations and operations by category and type of aircraft. These categories include general aviation, corporate jets, Boeing, air taxi and military. These 2018 forecast operations were compared to the most recent 12 months (November 2015 through October 2016) of the large aircraft (commercial, air taxi, corporate aircraft, military) activity at the airport from the Traffic Flow Management System Counts (TFMSC) which does not include operations from small aircraft flying visual flight rules but do include most aircraft that operate in the National Airspace System (NAS) and the aircraft that that dominate the noise contours. The results show that the current operations and the forecast 2018 operations are similar.
In terms of total large aircraft activity and types of activity. This data is presented in the attached Figure A.

3. A sentence in Section 5.1 states, "These noise contours are supplemented in this study with calculated noise levels for selected points on the ground." There is no reference to a table showing these levels. The levels for the nearest sensitive receptors should be included to demonstrate that the future increase conforms to allowable FAA increase thresholds (e.g. 3 decibel (dB) for the 60 DNL contour), and characterize whether the increase would be perceptible or noticeable.

The AEDT noise model allows for the generation of noise contours or grid point predictions. As requested in the above comment, grid representative receptor locations were identified to illustrate the change in noise levels for the various operational scenarios that have been presented. Six locations were used and are presented graphically on a base map with the No Action 2018 updated noise contour in Figure B. Site N1 and S1 are locations north and south of the airport that is exposed to noise levels greater than 65 DNL. These sites are non-residential land uses. Sites N2 and S2 are locations north and south of the airport exposed to noise levels between 60 and 65 DNL. These sites are non-residential land uses. Sites N3 and S3 are locations north and south of the airport that are exposed to noise levels between 55 DNL and 60 DNL. These locations are at residential land uses.

The various scenarios and associated assumptions are listed below; noise contours and grid locations analysis were completed for each of these cases. The results of the grid location analysis is presented in Table A. The table presents the DNL noise level for the 2018 updated No Action case and the delta increase in DNL under thresholds of significance that would occur with each of the operational scenarios that were evaluated as follows. A more detailed description to these assumptions is contained in the Noise Contour Update Memo.

2018 Updated No Action
- Updated Model to Actual Boeing Aircraft, No Substitutions

2018 Original Commercial Aircraft
- Updated Model to Actual Boeing Aircraft, No Substitutions
- Original Commercial Operations (Q400 and MD83)
- Original Max Throughput of 12 departures per day (6 Regional and 6 Commercial)

2018 Study of updated Commercial Aircraft that could replace original type equipment
- Updated Model to Actual Boeing Aircraft, No Substitutions
- Current Generation Commercial Operations (EMB175 and 737800)
- Original Max Throughput of 12 departures per day (6 Regional and 6 Commercial)
- Revised Max Throughput of 16 departures per day (8 Regional and 8 Commercial)
Table A
Representative Receptor Grid Locations

<table>
<thead>
<tr>
<th>Grid Site ID</th>
<th>2018 No Action DNL</th>
<th>2018 Original Commercial With Project Delta</th>
<th>Max Throughput Delta</th>
<th>2018 Revised Commercial With Project Delta</th>
<th>Max Throughput Delta</th>
<th>Revised Max Throughput Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>65.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>N2</td>
<td>62.9</td>
<td>0.3</td>
<td>0.8</td>
<td>0.4</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>N3</td>
<td>55.5</td>
<td>0.6</td>
<td>1.4</td>
<td>0.4</td>
<td>1.3</td>
<td>1.9</td>
</tr>
<tr>
<td>S1</td>
<td>65.2</td>
<td>0.3</td>
<td>0.8</td>
<td>0.5</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>S2</td>
<td>62.7</td>
<td>0.4</td>
<td>1.0</td>
<td>0.5</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>S3</td>
<td>55.5</td>
<td>0.5</td>
<td>1.3</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Source: BridgeNet International, January 1017

Per FAA Order 1050.1F, Environmental Impacts: Policies and Procedures Table 4-1, and in accordance with FAA Order 5050.4B, National Environmental Policy Act (NEPA) Implementing Instructions for Airport Actions, there are thresholds of significance defined at the greater than 65 DNL, 65 – 60 DNL, and the 60 – 45 DNL levels. For an action to reach the threshold of significance, the proposed action would have to be an increase for a noise sensitive land use by 1.5 dB or more at the 65 DNL noise contour or higher, 3 dB or more at the 60 – 65 DNL range, and 5 dB or more at the 45 to 60 DNL range. Standard FAA practice for environmental studies is to create noise contours at 65 DNL or greater, and then use grid point analysis to determine significance of the changes in noise at locations beyond the 65 DNL contour when an impact with the 65 DNL is identified. The decibel increases as a result of the introduction of commercial service are all below the FAA’s thresholds of significance. This is the case for the project conditions, the original Maximum Throughput conditions, and the new Revised Maximum Throughput conditions.

4. Because land use within the 65 DNL is considered compatible with the project, the FAA does not require consideration of land use within the 60 DNL. However, a discussion of the 60 DNL contour is recommended, along with a discussion of noise levels at selected ground points within the 60 DNL contour representing the nearest noise sensitive receptors to illustrate that the future increases associated with introduction of commercial service would be less than 3 dB and not perceptible at sensitive uses within the contour.

The information requested in Comment 4 is presented in the above response to Comment 3.
5. Nighttime operations should be discussed specifically, in terms of existing and future operations. Given that nighttime operations are projected to increase slightly, it is recommended that a qualitative discussion for the potential for sleep disturbance should be added, to show that the effect was considered.

The DNL noise metric includes a weighting factor for operations that occur during the nighttime hours. The FAA defines nighttime as the hours between 10:00 pm and 7:00 am. For operations that occur during the nighttime hours, they are weighted by a factor of 10 to account for the increased sensitivity associated with nighttime operations. The potential for night operations was factored into the study in the revised Throughput assumptions that included eight departures and eight landings per day of both the 737800 and EMB175 aircraft. The study assumed the potential of one departure and one arrival of the 737800 aircraft could occur in the nighttime hours while two departures and one arrival of the EMB175 aircraft could occur in the nighttime hours. When nighttime operations do occur for commercial service operations, they are generally in the hour before 7 a.m. or the hour after 10 p.m.

6. A sentence in Section 3.1.2 states, "This is an increase... from the base year 2008." Based on the data in Table 1 this is a decrease, not an increase. This statement should be verified with supporting data for all analyzed years in tables when the model is updated. The same applies to Section 3.1.4.

As identified in the comment, the report contained a typo. The operations decreased, not increased. The correct operations were reflected in the original and updated analysis.

7. The analysis for base year and future year cases in Section 3 states operations were derived from "forecasting methodology" but is not explained further. This methodology used should be described in detail, particularly since operations decreased from the base year.

The forecast methodology was presented in the NEPA EA document (Section B), and was not a task of the noise study. The forecast was based upon the FAA Terminal Area Forecast (TAF) at the time, and information gathered from operators at the airport such as Boeing Aircraft Corporation.

8. Section 3.1.3 describes DNL modeling results and refers to Figure D6 in the Environmental Consequences Chapter: "A comparison of the Future Year 2013 No Action DNL noise contours with the 2013 Preferred Alternative DNL noise contours shows that there is less than a 1.5 dB increase in the 65 DNL noise contour and less than a 3 dB increase in the 60 DNL noise contour." An increase in noise levels cannot be derived from contours of absolute noise level. To quantify the increase in noise level, noise level increase contours or selected ground points must be used. Further, no 60 DNL contours are shown on any of the figures in Section D of the EA. The 60 DNL contour should be added to the figures, and a table of selected point sound levels should be added.

A grid point analysis of the new AEDT noise contours that includes locations beyond the 65 DNL is presented in the response to Comment 3.
9. As background, the analysis should discuss phase-out/phase-in of Stage 2/Stage 3/Stage 4 aircraft, and information relevant to aircraft used at Paine Field as applicable for compliance with ANCA and the FAA Modernization and Reform Act.

Since the study was prepared, the FAA Modernization and Reform Act phased out Stage 2 aircraft under 75,000 lbs. The only aircraft that were affected by this phase out in the study were Stage 2 corporate jets (Gulfstream II/III and Learjet 24/25 series). These operations were a small part of the overall 2008 operations and were not included in the future year 2018 forecast because they were expected to be retired from the fleet through natural attrition. There are also a small number of hush kit Stage 3 aircraft that were built originally as Stage 2 aircraft. These aircraft are not required to be phased out, but their operations are minimal. There is currently no Stage 3 phase out scheduled or planned in the United States.

The fleet of jet aircraft has become quieter as each new generation of aircraft is developed. The new generation regional jets and narrow body commercial jets are just entering service. These aircraft are quieter than the current aircraft that they will eventually replace; however, these new aircraft are not yet in the noise models.

10. Noise levels from construction equipment at receptor locations should be disclosed. The document should include an analysis of noise levels from construction at the nearest sensitive receptor locations, and assess significance of impacts from construction noise. This information should be included even though construction may be done entirely during exempt hours.

Construction impacts were presented in the NEPA EA document. The noise associated with construction is considered to be minimal in that the terminal is located near the center of the air field, between the parallel runways, and not located near residential land use. The nearest residential land use is approximately 0.6 miles from the terminal site. The terminal is a minimal construction design that is estimated to last roughly 4 months. Any construction would be subject to compliance with the County Noise Ordinance.

11. An analysis address significance of future operations noise due to traffic generated at the terminal due to the introduction of commercial operations. Noise levels and project noise level increases due to increased traffic operations at the nearest noise sensitive receptors should be disclosed.

The noise report was tasked to address aircraft operations only. Street volume activity was analyzed in the traffic study element of the NEPA EA document. In response to this comment, the traffic information presented in the traffic report was used to estimate the potential changes in vehicular traffic noise. The traffic report estimated the peak hour traffic distribution associated with the vehicle traffic from commercial service operations. The data show traffic volumes for "without" and "with" future project conditions for various street segments that would be utilized by vehicles driving to and from the proposed terminal. The street segments that have residential land uses located adjacent to the street are listed below in Table B, along with the future traffic volumes. The results presented in Table C show the Peak Hour LEQ (Noise Equivalent Level) for with and without project conditions at the property line of the nearest residential land use located...
on each of the street segments. The data show that the project will result in a potential increase in the traffic DNL noise level of 0.2 decibels or less. This increase is less than 3 dB, which is considered a threshold of significance for traffic noise impacts.

Table B
Future Vehicle Traffic Volumes

<table>
<thead>
<tr>
<th>Facility</th>
<th>Lane Type</th>
<th>Traffic Volumes</th>
<th>Speed Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beverly Park Road NE of 525</td>
<td>Arterial</td>
<td>2,312 Without Project</td>
<td>2,340 With Project</td>
</tr>
<tr>
<td>525 S of Beverly Park Road</td>
<td>Arterial</td>
<td>3,962 Without Project</td>
<td>3,980 With Project</td>
</tr>
<tr>
<td>525 S of Harbor Pointe Boulevard</td>
<td>Arterial</td>
<td>3,644 Without Project</td>
<td>3,636 With Project</td>
</tr>
<tr>
<td>Airport Road N or Beverly Park Road</td>
<td>Arterial</td>
<td>2,261 Without Project</td>
<td>2,367 With Project</td>
</tr>
</tbody>
</table>

Table C
Future Vehicle Traffic Noise Levels

<table>
<thead>
<tr>
<th>Roadway Segment</th>
<th>Noise Level (dB Leq) at the Proposed Project's Nearest Residential Property Line</th>
<th>Change Due To Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Project</td>
<td>With Project</td>
</tr>
<tr>
<td>525 S of Beverly Park Road and Beverly Park Road NE of 525</td>
<td>61.1</td>
<td>61.1</td>
</tr>
<tr>
<td>Beverly Park Road W of Airport Road and Airport Road S of Beverly Park Road</td>
<td>62.6</td>
<td>62.8</td>
</tr>
<tr>
<td>525 S of Harbour Pointe Road</td>
<td>56.7</td>
<td>56.7</td>
</tr>
</tbody>
</table>
12. The full noise analysis of the terminal capacity/maximum throughput scenario in Appendix P of the EA should be incorporated in the Noise Study Report. Note that the section concludes that the 65 DNL would not encompass any noise sensitive uses. However the analysis included in Appendix P does not demonstrate this, even though the 65 DNL would be 53 acres larger than the preferred alternative.

The updated noise contour analysis used the AEDT noise model, and evaluated both the 2018 preferred alternative and the Appendix P Maximum Throughput alternative. The results showed that the Maximum Throughput Alternative contours are larger than the Preferred contours, but did not result in any noise sensitive land uses within the 65 DNL noise contour. In addition to the Appendix P assumptions for Maximum Throughput, the study also prepared a revised Maximum Throughput scenario that increased the commercial operations from six departures for each aircraft to eight departures for each aircraft, along with more of the commercial operations in the night time period. These contours were larger in size than the original Maximum Throughput contours, but did not result in an increase that included noise sensitive land use within the 65 DNL. The results in Table A presented the relative change in noise associated with this alternative. The Noise Contour memo also presented the relative change in size of the 65 DNL noise contour for these alternatives.
Figure A - TFMSC Report (Airport)

From 11/2015 To 10/2016 | Airport=PAE

<table>
<thead>
<tr>
<th>#</th>
<th>Aircraft</th>
<th>Total Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- unknown</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>A109 - Agusta SAAF-109</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>A124 - Antonov AN-124 Ruslan</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>A320 - Airbus A320 All Series</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>A321 - Airbus A321 All Series</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>A332 - Airbus A330-200</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>AA1 - American AA-1 Trainer</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>AA5 - American AA-5 Traveler</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>AC11 - North American Commander 112</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>AC45 - unknown</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>AC50 - Aero Commander 500</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>AC90 - Gulfstream Commander</td>
<td>7</td>
</tr>
<tr>
<td>13</td>
<td>AEST - Piper Aero Star</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>AS65 - Aérospatiale AS-366</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>ASTR - IAI Astra 1125</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>B190 - Beech 1900C-12J</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>B26 - Douglas TB-26 Invader</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>B350 - Beech Super King Air 350</td>
<td>17</td>
</tr>
<tr>
<td>19</td>
<td>B38T - Allison 36 Turbine Bonanza</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>B378 - Boeing 737-800</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>B429 - Bell 429</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>B722 - Boeing 727-200</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>B733 - Boeing 737-300</td>
<td>89</td>
</tr>
<tr>
<td>24</td>
<td>B734 - Boeing 737-400</td>
<td>28</td>
</tr>
<tr>
<td>25</td>
<td>B736 - Boeing 737-600</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>B737 - Boeing 737-700</td>
<td>408</td>
</tr>
<tr>
<td>27</td>
<td>B738 - Boeing 737-800</td>
<td>576</td>
</tr>
<tr>
<td>28</td>
<td>B739 - Boeing 737-900</td>
<td>153</td>
</tr>
<tr>
<td>29</td>
<td>B744 - Boeing 747-400</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>B747 - Boeing 747 All Series</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>B748 - Boeing 747-8</td>
<td>96</td>
</tr>
<tr>
<td>32</td>
<td>B752 - Boeing 757-200</td>
<td>8</td>
</tr>
<tr>
<td>33</td>
<td>B762 - Boeing 767-200</td>
<td>81</td>
</tr>
<tr>
<td>34</td>
<td>B763 - Boeing 767-300</td>
<td>124</td>
</tr>
<tr>
<td>35</td>
<td>B772 - Boeing 777-200</td>
<td>50</td>
</tr>
<tr>
<td>36</td>
<td>B773 - Boeing 777-300</td>
<td>201</td>
</tr>
<tr>
<td>37</td>
<td>B777 - Boeing 777-300</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>B77L - Boeing 777-200LRF/LR</td>
<td>35</td>
</tr>
<tr>
<td>39</td>
<td>B77W - Boeing 777-300ER</td>
<td>490</td>
</tr>
<tr>
<td>40</td>
<td>B787 - Boeing 787</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>B788 - Boeing 787-800</td>
<td>191</td>
</tr>
<tr>
<td>42</td>
<td>B789 - Boeing 787-9 Dreamliner</td>
<td>522</td>
</tr>
<tr>
<td>43</td>
<td>BE10 - Beech King Air 100 A/B</td>
<td>24</td>
</tr>
<tr>
<td>44</td>
<td>BE19 - Beech 19 Sport</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>BE20 - Beech 200 Super King</td>
<td>60</td>
</tr>
<tr>
<td>Number</td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>BE23 - Beech 23 Sundowner</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>BE24 - Beech 24 Sierra</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>BE30 - Raytheon 300 Super King Air</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>BE33 - Beech Bonanza 33</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>BE35 - Beech Bonanza 35</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>BE36 - Beech Bonanza 36</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>BE40 - Raytheon/Beech Beechjet 400/T-1</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>BE50 - Beech Twin Bonanza</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>BE55 - Beech Baron 55</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>BE58 - Beech 58</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>BE60 - Beech 60 Duke</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>BE76 - Beech 76 Duchess</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>BE95 - Beech 95 Travel Air</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>BE99 - Beech Airliner 99</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>BE9L - Beech King Air 90</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>BE8T - Beech F90 King Air</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>BL17 - Bellanca Viking</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>BLCF - Boeing 747 Large Cargo Freighter</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>C130 - Lockheed 130 Hercules</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>C150 - Cessna 150</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>C152 - Cessna 152</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>C172 - Boeing Globemaster 3</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>C172 - Cessna Skyhawk 172/Cutlass</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>C177 - Cessna 177 Cardinal</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>C180 - Cessna 180</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>C182 - Cessna Skylane 182</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>C185 - Cessna Skywagon 185</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>C2 - Grumman C-2 Greyhound</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>C205 - Cessna 205</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>C206 - Cessna 206 Stationair</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>C207 - Cessna Turbo Stationair 7</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>C208 - Cessna 208 Caravan</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>C210 - Cessna 210 Centurion</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>C240 - Cessna TTX Model T240</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>C25A - Cessna Citation CJ2</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>C25B - Cessna Citation CJ3</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>C25C - Cessna Citation CJ4</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>C2TX - unknown</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>C303 - Cessna T303 Crusader</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>C310 - Cessna 310</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>C320 - Cessna Skyknight</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>C337 - Cessna Turbo Super Skymaster</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>C340 - Cessna 340</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>C414 - Cessna Chancellor 414</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>C421 - Cessna Golden Eagle 421</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>C425 - Cessna 425 Corsair</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>C441 - Cessna Conquest</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>C501 - Cessna I/SP</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>C510 - Cessna Citation Mustang</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>C525 - Cessna CitationJet/GJ1</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>C550 - Cessna Citation II/Bravo</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>C560 - Cessna Citation V/Ultra/Encore</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Model</td>
<td>Quantity</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>98</td>
<td>C56X - Cessna Excel/XLS</td>
<td>99</td>
</tr>
<tr>
<td>99</td>
<td>C650 - Cessna III/IV/VI/VII</td>
<td>34</td>
</tr>
<tr>
<td>100</td>
<td>C680 - Cessna Citation Sovereign</td>
<td>41</td>
</tr>
<tr>
<td>101</td>
<td>C750 - Cessna Citation X</td>
<td>58</td>
</tr>
<tr>
<td>102</td>
<td>C77R - Cessna Cardinal RG</td>
<td>3</td>
</tr>
<tr>
<td>103</td>
<td>C82R - Cessna Skylane RG</td>
<td>18</td>
</tr>
<tr>
<td>104</td>
<td>CL30 - Bombardier (Canadair) Challenger 300</td>
<td>75</td>
</tr>
<tr>
<td>105</td>
<td>CL35 - Bombardier Challenger 300</td>
<td>25</td>
</tr>
<tr>
<td>106</td>
<td>CL60 - Bombardier Challenger 800/601/604</td>
<td>136</td>
</tr>
<tr>
<td>107</td>
<td>COL3 - Lancair LC-40 Columbia 400</td>
<td>18</td>
</tr>
<tr>
<td>108</td>
<td>COL4 - Lancair LC-41 Columbia 400</td>
<td>34</td>
</tr>
<tr>
<td>108</td>
<td>CVLT - Convair CV-540/580/600/640, VC-131H</td>
<td>16</td>
</tr>
<tr>
<td>110</td>
<td>D328 - Dornier 328 Series</td>
<td>2</td>
</tr>
<tr>
<td>111</td>
<td>DA40 - Diamond Star DA40</td>
<td>30</td>
</tr>
<tr>
<td>112</td>
<td>DA42 - Diamond Twin Star</td>
<td>8</td>
</tr>
<tr>
<td>113</td>
<td>DA60 - Mystere Falcon 50 Dassault</td>
<td>1</td>
</tr>
<tr>
<td>114</td>
<td>DC91 - Boeing (Douglas) DC 9-10</td>
<td>26</td>
</tr>
<tr>
<td>115</td>
<td>DC93 - Boeing (Douglas) DC 9-30</td>
<td>6</td>
</tr>
<tr>
<td>116</td>
<td>DHD - Bombardier Q-400</td>
<td>6</td>
</tr>
<tr>
<td>117</td>
<td>DHC2 - De Havilland Canada DHC-2 Beaver</td>
<td>13</td>
</tr>
<tr>
<td>118</td>
<td>DHC6 - DeHavilland Twin Otter</td>
<td>4</td>
</tr>
<tr>
<td>119</td>
<td>DV20 - Diamond DV-20</td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>E135 - Embraer ERJ 135/140/Legacy</td>
<td>2</td>
</tr>
<tr>
<td>121</td>
<td>E3TF - Boeing Sentry TF33/E3C</td>
<td>1</td>
</tr>
<tr>
<td>122</td>
<td>E50P - Embraer Phenom 100</td>
<td>10</td>
</tr>
<tr>
<td>123</td>
<td>E55P - Embraer Phenom 300</td>
<td>32</td>
</tr>
<tr>
<td>124</td>
<td>E6 - Boeing E-6 Mercury</td>
<td>2</td>
</tr>
<tr>
<td>125</td>
<td>EA50 - Eclipse 500</td>
<td>11</td>
</tr>
<tr>
<td>126</td>
<td>EC35 - Eurocopter EC-135</td>
<td>6</td>
</tr>
<tr>
<td>127</td>
<td>F18 - Boeing FA-18 Hornet</td>
<td>14</td>
</tr>
<tr>
<td>128</td>
<td>F18S - F18 Hornet</td>
<td>6</td>
</tr>
<tr>
<td>129</td>
<td>F2TH - Dassault Falcon 2000</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>F5 - Northrop F-5 Freedom Fighter</td>
<td>3</td>
</tr>
<tr>
<td>131</td>
<td>F900 - Dassault Falcon 900</td>
<td>72</td>
</tr>
<tr>
<td>132</td>
<td>FA20 - Dassault Falcon/Mystère 20</td>
<td>6</td>
</tr>
<tr>
<td>133</td>
<td>FA50 - Dassault Falcon/Mystère 50</td>
<td>35</td>
</tr>
<tr>
<td>134</td>
<td>FA7X - Dassault Falcon F7X</td>
<td>4</td>
</tr>
<tr>
<td>135</td>
<td>G150 - Gulfstream G150</td>
<td>6</td>
</tr>
<tr>
<td>136</td>
<td>G21T - Grumman G21T Turbogoose</td>
<td>1</td>
</tr>
<tr>
<td>137</td>
<td>G200 - Gulfstream G200</td>
<td>6</td>
</tr>
<tr>
<td>138</td>
<td>G4 - Gulfstream IV</td>
<td>5</td>
</tr>
<tr>
<td>139</td>
<td>GALX - IAI 1126 Galaxy/Gulfstream G200</td>
<td>14</td>
</tr>
<tr>
<td>140</td>
<td>GB74 - unknown</td>
<td>1</td>
</tr>
<tr>
<td>141</td>
<td>GB76 - unknown</td>
<td>1</td>
</tr>
<tr>
<td>142</td>
<td>GL5T - Bombardier BD-700 Global 5000</td>
<td>2</td>
</tr>
<tr>
<td>143</td>
<td>GLAS - New Glasair</td>
<td>10</td>
</tr>
<tr>
<td>144</td>
<td>GLEX - Bombardier BD-700 Global Express</td>
<td>34</td>
</tr>
<tr>
<td>145</td>
<td>GLF3 - Gulfstream III/G300</td>
<td>6</td>
</tr>
<tr>
<td>146</td>
<td>GLF4 - Gulfstream IV/G400</td>
<td>139</td>
</tr>
<tr>
<td>147</td>
<td>GLF5 - Gulfstream V/G500</td>
<td>24</td>
</tr>
<tr>
<td>148</td>
<td>GLF6 - Gulfstream</td>
<td>11</td>
</tr>
<tr>
<td>149</td>
<td>GLSP - F-GLSP</td>
<td>23</td>
</tr>
<tr>
<td>Catalog Number</td>
<td>Aircraft Description</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>H25B - BAe HS 125/700-800/Hawker 800</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>H47 - Boeing CH-47 Chinook</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>H60 - Sikorsky SH-60 Seahawk</td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>H64 - Boeing AH-64 Longbow Apache</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>HDJT - HONDA HA-420 HondaJet</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>HELO - Helicopter</td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>HXB - Experimental Aircraft</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>KODI - Quest Kodiak</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>LA4 - Lake LA-4</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>LGEZ - Rutan 61 Long-EZ</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>LJ25 - Bombardier Learjet 25</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>LJ31 - Bombardier Learjet 31/A/B</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>LJ35 - Bombardier Learjet 35/36</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>LJ36 - Learjet 36</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>LJ45 - Bombardier Learjet 45</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>LJ55 - Bombardier Learjet 55</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>LJ60 - Bombardier Learjet 60</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>LJ75 - Learjet 75</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>LNC4 - Lancair 4</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>LNCE - Lancair Super ES</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>LNP4 - Lancair Propjet four-seat</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>M20P - Mooney M-20C Ranger</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>M20T - Turbo Mooney M20K</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>M7 - Maule M-7-235 Orion</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>MU2 - Mitsubishi Marquise/Solitaire</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>P180 - Piaggio P-180 Avanti</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>P210 - Riley Super P210</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>P28A - Piper Cherokee</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>P28B - Piper Turbo Dakota</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>P28R - Cherokee Arrow/Turbo</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>P28T - Piper Arrow 4</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>P3 - Lockheed P-3C Orion</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>P32R - Piper 32</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>P3C - Lockheed P-3C Orion</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>P46T - Piper Malibu Meridian</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>P68 - Partenavia P68 Victor</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>P8 - Boeing P-8 Poseidon</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>PA23 - Piper PA-23</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>PA24 - Piper PA-24</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>PA27 - Piper Aztec</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>PA28 - Piper Cherokee</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>PA30 - Piper PA-30</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>PA31 - Piper Navajo PA-31</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>PA32 - Piper Cherokee Six</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>PA34 - Piper PA-34 Seneca</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>PA44 - Piper Seminole</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>PA46 - Piper Malibu</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>PAY1 - Piper Cheyenne 1</td>
<td></td>
</tr>
<tr>
<td>198</td>
<td>PC12 - Pilatus PC-12</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>PRM1 - Raytheon Premier 1/390 Premier 1</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>R44 - Robinson R-44 Raven</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>RV10 - Experimental</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Quantity</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>202</td>
<td>RV6 - AIEP Air Beetle</td>
<td>58</td>
</tr>
<tr>
<td>203</td>
<td>RV7 - Experimental RV-7</td>
<td>23</td>
</tr>
<tr>
<td>204</td>
<td>RV8 - RV-4/6/7/8; VANS</td>
<td>25</td>
</tr>
<tr>
<td>205</td>
<td>RV9 - Experimental</td>
<td>4</td>
</tr>
<tr>
<td>206</td>
<td>S22T - Cirrus SR-22 Turbo</td>
<td>2</td>
</tr>
<tr>
<td>207</td>
<td>S76 - Sikorsky S-76</td>
<td>2</td>
</tr>
<tr>
<td>208</td>
<td>SBR1 - North American Rockwell Sabre 40/60</td>
<td>26</td>
</tr>
<tr>
<td>209</td>
<td>SH36 - Shorts 360</td>
<td>2</td>
</tr>
<tr>
<td>210</td>
<td>SR20 - Cirrus SR-20</td>
<td>10</td>
</tr>
<tr>
<td>211</td>
<td>SR22 - Cirrus SR-22</td>
<td>176</td>
</tr>
<tr>
<td>212</td>
<td>SW3 - Fairchild Swearingen SA-226T/TB Merlin 3</td>
<td>7</td>
</tr>
<tr>
<td>213</td>
<td>SW4 - Swearingen Merlin 4/4A Metro2</td>
<td>11</td>
</tr>
<tr>
<td>214</td>
<td>T206 - Cessna T-206</td>
<td>2</td>
</tr>
<tr>
<td>215</td>
<td>T210 - Cessna T210M</td>
<td>6</td>
</tr>
<tr>
<td>216</td>
<td>T33 - Canadair CL-30 Silver Star</td>
<td>7</td>
</tr>
<tr>
<td>217</td>
<td>T38 - Northrop T-38 Talon</td>
<td>8</td>
</tr>
<tr>
<td>218</td>
<td>TBM7 - Socata TBM-7</td>
<td>7</td>
</tr>
<tr>
<td>219</td>
<td>TBM8 - Socata TBM-650</td>
<td>27</td>
</tr>
<tr>
<td>220</td>
<td>TEX2 - Raytheon Texan 2</td>
<td>1</td>
</tr>
<tr>
<td>221</td>
<td>UH60 - Blackhawk Helicopter</td>
<td>1</td>
</tr>
<tr>
<td>222</td>
<td>WW24 - IAI 1124 Westwind</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 11,497

Report created on Sun Dec 4 15:31:00 EST 2016

Sources: Traffic Flow Management System Counts (TFMSC), Aviation System Performance Metrics (ASPM)
Figure B
Updated 2018 Base Case Noise Contours with Representative Grid Locations

Assumptions:
- AFDT Noise Model
- EA 2018 Operational Assumptions
- Updated Actual Boeing Aircraft, No Substitutions

Source: BridgeNet International 2017
OWNERSHIP / ZONING MAP
ADOPTION OF EXISTING ENVIRONMENTAL DOCUMENT

Adoption for: [] Determination of Nonsignificance (DNS);
[] Environmental Impact Statement (EIS);
[X] Other: Mitigated Determination of Nonsignificance (WAC 197-11-350)

Local File Number: 16-109244 LDA
Project File Name: Paine Field Passenger Terminal

Applicant: Propeller Airports Paine Field

Location of Proposal: 3300 – 100th Street SW, Everett, Washington; located at the Paine Field Airport

Tax Account Number: 280415-004-001-00

DESCRIPTION OF PROPOSAL:
The proposal would construct a new terminal between the existing terminal building and the control tower. The proposed terminal building would total approximately 29,300 square feet of interior space in compliance with FAA Advisory Circular 150/5360-13 Planning and Design Guidelines for Airport Terminal Facilities. The main components of the building would include the entrance and check-in, Transportation Security Administration (TSA) security screening, passenger waiting, and boarding area.

Existing parking areas described in the leasehold will be reconfigured into new parking facility areas to support the proposed new passenger terminal. This would include four surface lots totaling approximately 600 parking stalls of automobile parking for airline passengers, waiting, rental cars and terminal employees. One parking area would be configured northeast of the proposed terminal on land currently used by the Airport as an aircraft parking apron area and adjacent grass. The foregoing is cumulatively referred to as the “Proposal”.

Construction of a passenger terminal building will have the related effect of enabling passenger commercial air service by regional and narrow body aircraft at Paine Field subject to the independent authority of the Federal Aviation Administration (FAA). Accordingly, for purposes of evaluating the environmental impacts of the Proposal under SEPA, the lead agency anticipates the Proposal at an estimated terminal capacity which has the potential to serve between six to eight turns per gate/per day (generating an estimated 12 to 16 flight operations per gate/per day). This equates to a corresponding passenger activity of 2,700 to 3,600 per day (inclusive of arrivals and departures). At such time as the terminal reaches estimated capacity, the Proposal is anticipated to result in 433-510 directional vehicle trips per day (total traffic generation estimated at 866 to 1,020 daily vehicle trips), based on an estimated capacity of six to eight turns per gate/per day (generating an estimated 12 to 16 flight operations per gate/per day).

Title of Document Being Adopted: Final NEPA Environmental Assessment for the Amendment of Operations Specifications for Air Carrier Operations, Amendment of a FAR Part 139 Certificate, and potential Funding for Modification and Modular Expansion of the Terminal at the Snohomish County Airport/Paine Field dated September 2012, together with all referenced tables, illustrations and appendices (hereinafter “Paine Field Final NEPA Environmental Assessment”).
Agency that Prepared Document Being Adopted: U.S. Department of Transportation, Federal Aviation Administration, Northwest Mountain Region, pursuant to that Finding of No Significant Impact and Record of Decision for the Amendment to the Operations Specifications for Air Carrier Operations, Amendment of a FAR Part 139 Certificate, and Modification of the Terminal Building at the Snohomish County Airport/Paine Field, dated December 4, 2012.

Date Adopted Document was Prepared: September 2012

Description of Document Being Adopted: Entirety of that Paine Field Final NEPA Environmental Assessment identified above relating to the following actions: (1) Amendments to the operations specifications for Horizon Air and Allegiant Air to allow scheduled commercial air service to the Snohomish County Airport/Paine Field; (2) Amending the existing Federal Aviation Regulations (FAR) Part 139 operating certificate for Paine Field from a Class IV operating certificate to a Class I operating certificate to allow Paine Field to serve scheduled commercial air service operations by large aircraft; and (3) approval of Airport Improvement Program (AIP) funding for the construction of modular terminal building sufficient to accommodate the proposed passenger service consisting of two gates.

Has Adopted Document been Challenged: Yes, appeal challenging adequacy of the Paine Field Final NEPA Environmental Assessment was filed under United States Court of Appeals, Ninth Circuit, Case No. 13-70385. By opinion filed March 4, 2016, the Ninth Circuit Court of Appeals denied petition for review and affirmed adequacy of the Paine Field Final NEPA Environmental Assessment.

The Document Being Adopted is Available to be Read at: The Paine Field Final NEPA Environmental Assessment is available online at: https://snohomishcountywa.gov/DocumentCenter/View/35391
The Paine Field Final NEPA Environmental Assessment may also be reviewed in person at the Snohomish County Department of Planning and Development Services, County Administration Building East, 2nd Floor, 3000 Rockefeller Avenue, Everett, Washington, Monday through Friday, 8:00 a.m. to 4:00 p.m.

Adoption of Document: In accordance with WAC 197-11-610(1), Snohomish County Department of Planning and Development Services, as lead agency for review of the above described proposal under the State Environmental Policy Act (SEPA), Ch. 43.21C RCW, have identified the Paine Field Final NEPA Environmental Assessment identified above as being appropriate for this proposal after independent review. The Final NEPA Environmental Assessment meets our environmental review needs for the current proposal as to those elements of the environment identified in the accompanying SEPA mitigated determination of non-significance (MDNS), and the same is hereby adopted to support the MDNS determination.

Name of Agency Adopting Document: Snohomish County Department of Planning and Development Services

Contact Person: Tom Barnett, Project Manager
Phone (425)262-2997

Responsible Official: Barb Mock, Director
Planning and Development Services
Phone (425)388-3311

Address: County Administration Building East, 2nd Floor
3000 Rockefeller Avenue, M/S 604
Everett, Washington 98201

Signature:
Date: 2/12/17

Ryan Countryman for Responsible Official
NOTICE OF DECISION

Date: February 26, 2017

To: Parties of Record

From: Tom Barnett, Project Manager
Snohomish County Department of Planning and Development Services

Subject: Notice of Decision - Approval of Land Disturbing Activity Permit Application
Paine Field Passenger Terminal

PDS File Number: 16-109244 LDA

Applicant: Propeller Airports Paine Field
9724 – 32nd Drive W
Everett, Washington, 98204

Property Owner Name: Snohomish County
Tax Account Number: 280415-004-001-00

File Number: 16-109244 LDA
Project Name: Paine Field Passenger Terminal

The Snohomish County Department of Planning and Development Services has reviewed the land disturbing activity permit application materials submitted by Propeller Airports Paine Field, for the planned construction of a passenger terminal for commercial air service, and has found that the application complies with applicable development, grading, drainage and critical areas regulations and all other applicable requirements of Title 30 SCC. The department has issued a Mitigated Determination of Nonsignificance with project conditions dated February 26, 2017. The department has approved the land disturbing activity permit application.

Pursuant to SCC 30.71.045, this is a final decision of the department but shall not authorize action until the expiration of the appeal period as set forth in SCC 30.71.050, or if appealed, until the administrative appeal is final.

APPEAL

This decision may be appealed by an aggrieved party of record pursuant to the requirements of SCC 30.71.050 within fourteen (14) calendar days of the notice of the decision. An appeal must be addressed to the County Hearing Examiner, accompanied by a filing fee of $500.00, and filed in writing at the Public Assistance Counter of Planning and Development Services, 2nd Floor, County Administration Building, Everett, WA, prior to 5:00 p.m. on March 13, 2017.
form of appeal must be a written statement in accordance with SCC 30.71.040(2). Failure to file a timely and complete appeal shall constitute waiver of all rights to an administrative appeal under county code.

Parties of Record:

Bill Dolan
Snohomish County Airport
3220 – 100th Street SW, Suite A
Everett, WA 98204

William Lider
Lider Engineering, PLLC
2526 – 205th Place SW
Lynnwood, WA 98036

Shelly Morgan
Mukilteo School District
9401 Sharon Drive
Mukilteo, WA 98204

Peter Eglick
Eglick & Whited PLLC
1000 Second Avenue, Suite 3130
Seattle, WA 98104

Chanda Emery
Community Development Department
Development & Business Services Center
4114 - 196th St. SW
Lynnwood, WA 98036

Ron Fronheiser
4615 Harbour Heights Drive
Mukilteo, WA 98275

Sabina Popa,
Everett Transit
3201 Smith Ave, Suite 215
Everett, WA 98201

Patricia Love
City of Mukilteo Community Development
11930 Cyrus Way
Mukilteo, WA 98275

Mike Moore
Save Our Communities
P.O. Box 482
Mukilteo, WA 98275

Joe A. Kunzler
Avgesko Productions
901 Metcalf Street, PMB 21
Sedro-Woolley, WA 98284

Noah Haglund
Everett Herald
P.O. Box 930
Everett, WA 98206